Китайская теорема об остатках
для любого набора попарно простых чисел m1, m2, ... , mn найдется целое число x, дающее заданные остатки a1, a2, ... , an при делении на m1, m2, ... , mn, т. е. при каждом k x ≡ ak (mod mk)
векторное пространство, в котором определена квазинорма
Рассматриваются квазинормированные пространства, порождаемые генфункциями. Для этих пространств получены необходимые и достаточные условия их правильности, т. е. равносильности двух понятий ограниченности множеств: в смысле метрики и в смысле топологии векторного пространства.
В работе рассмотрен вопрос об интерполяции положительного и регулярного операторов в квазинормированных пространствах Орлича измеримых по Лебегу векторнозначных функций.
для любого набора попарно простых чисел m1, m2, ... , mn найдется целое число x, дающее заданные остатки a1, a2, ... , an при делении на m1, m2, ... , mn, т. е. при каждом k x ≡ ak (mod mk)
множество, в котором не существует связного подмножества, содержащего более одной точки
угол, величина которого равна 2π или 360°
Возможность создать свои термины в разработке
Еще чуть-чуть и ты сможешь писать определения на платформе Автор24. Укажи почту и мы пришлем уведомление с обновлением ☺️
Включи камеру на своем телефоне и наведи на Qr-код.
Кампус Хаб бот откроется на устройстве