Вронскиан
определитель, состоящий из функций f1 (x), f2 (x),..., fn (x) и их производных до (n − 1)-го порядка
функция, после умножения на которую пфаффова форма f(x, y)dx + g(x, y)dy обращается в полный дифференциал некоторой функции от двух переменных
определитель, состоящий из функций f1 (x), f2 (x),..., fn (x) и их производных до (n − 1)-го порядка
способ определения множества, при котором задаются некоторые элементы определяемого множества и некоторые правила, позволяющие из имеющихся получать другие элементы этого множества; в частном случае определение понятия P (n), зависящего от натурального параметра n, протекает по следующей схеме: задаются P (0) и правило получения P (n + 1) от n и P (n); напр., факториал n! определяется так: 0! = 1, (n + 1)! = (n + 1) · n!
знакочередующийся ряд 1 + 1/3 + 1/5 + 1/7 +…, сходящийся к π/4
Возможность создать свои термины в разработке
Еще чуть-чуть и ты сможешь писать определения на платформе Автор24. Укажи почту и мы пришлем уведомление с обновлением ☺️
Включи камеру на своем телефоне и наведи на Qr-код.
Кампус Хаб бот откроется на устройстве