Клиффорда параллель
прямая эллиптического пространства, отстоящая от данной прямой на постоянном расстоянии
топологическое пространство, удовлетворяющее аксиоме Хаусдорфа
Построено пространство нормированных, однородных и max-plus-полуаддитивных функционалов и дано его описание. Установлено, что операция взятия пространства нормированных, однородных и max-plus-полуаддитивных функционалов образует нормальный функтор, действующий в категории компактных Хаусдорфовых пространств и их непрерывных отображений.
В статье водятся новые понятия функционального анализа: хаусдорфов спектр и хаусдорфов предел или $H$-предел хаусдорфова спектра в категории локально выпуклых пространств (или даже, в более общих полуабелевых категориях). Частными случаями регулярного хаусдорфова предела являются проективный и индуктивный пределы отделимых локально выпуклых пространств. Новый класс $H$-пространств содержит пространства Фреше и замкнут относительно операций взятия счетного индуктивного и проективного пределов, перехода к замкнутому подпространству и фактор-пространству. Более того, для $H$-пространств справедлив усиленный вариант теоремы о замкнутом графике. Доказаны теоремы об обращении в нуль первой производной функтора хаусдорфова предела средствами гомологической алгебры.
прямая эллиптического пространства, отстоящая от данной прямой на постоянном расстоянии
замкнутая ломаная линия
угол, образованный лучом, вращающимся по часовой стрелке
Наведи камеру телефона на QR-код — бот Автор24 откроется на вашем телефоне