В работе рассматриваются численные решения уравнений Навье-Стокса, описывающие ламинарные и турбулентные течения в каналах различной геометрии и в полости при больших числах Рейнольдса. Разработан оригинальный численный алгоритм интегрирования системы нелинейных дифференциальных уравнений в частных производных, основанный на сходимости последовательности решений задачи Дирихле. На основе этого алгоритма создана численная модель слияния двух ламинарных потоков в Т-образном канале. Установлен новый механизм меандрирования, заключающийся в том, что при слиянии двух потоков образуется струя, содержащая зоны возвратного течения. Исследовано вихревое движение в прямоугольной полости. Установлено, что численное решение задачи с разрывными граничными условиями теряет устойчивость при числе Рейнольдса Re>2340. Исследованы траектории частиц пассивной примеси в цилиндрической полости. Дано объяснение поведения чаинок в чашке чая при формировании тороидального вихря в результате кругового по...
В работе рассматриваются численные решения уравнений Навье-Стокса, описывающие ламинарные и турбулентные течения в каналах различной геометрии и в полости при больших числах Рейнольдса. Разработан оригинальный численный алгоритм интегрирования системы нелинейных дифференциальных уравнений в частных производных, основанный на сходимости последовательности решений задачи Дирихле. На основе этого алгоритма создана численная модель слияния двух ламинарных потоков в Т-образном канале. Установлен новый механизм меандрирования, заключающийся в том, что при слиянии двух потоков образуется струя, содержащая зоны возвратного течения. Исследовано вихревое движение в прямоугольной полости. Установлено, что численное решение задачи с разрывными граничными условиями теряет устойчивость при числе Рейнольдса Re>2340. Исследованы траектории частиц пассивной примеси в цилиндрической полости. Дано объяснение поведения чаинок в чашке чая при формировании тороидального вихря в результате кругового по...