Справочник от Автор24
Найди эксперта для помощи в учебе
Найти эксперта
+2

Расчет пространственных рам

Расчет пространственных систем

Пространственные системы – это шарнирно-стержневые системы, опирающиеся на пространственные опоры, имеющие свои статические и кинематические свойства.

Отличие пространственных систем от плоских заключается в том, что при расчете последних определяются три внутренних усилия $M, Q$ и $N$. Если же речь идет о пространственных системах, то количество неизвестных усилий увеличивается до шести: изгибающие моменты $M_y, M_z$ и $M_x$, поперечные силы $Q_z$ и $Q_y$, а также продольная сила $N$.

При расчете пространственных систем методом перемещений в качестве неизвестных принимаются угловые и линейные перемещения, по аналогии с плоскими рамами. Поскольку в пространственных системах каждый жесткий узел имеет повороты в трех взаимно перпендикулярных плоскостях, степень кинематической неопределимости таких систем будет определяться по формуле:

$N = 3 • N_y + N_л$

Здесь $N_y$ – количество жестких сопряжений пространственной рамы, способных поворачиваться под действием внешних усилий, $N_л$ – степень линейной подвижности узлов, которая определяется как степень свободы всего механизма.

Дата последнего обновления статьи: 07.10.2024
Получи помощь с рефератом от ИИ-шки
ИИ ответит за 2 минуты
Все самое важное и интересное в Telegram

Все сервисы Справочника в твоем телефоне! Просто напиши Боту, что ты ищешь и он быстро найдет нужную статью, лекцию или пособие для тебя!

Перейти в Telegram Bot