Справочник от Автор24
Найди эксперта для помощи в учебе
Найти эксперта
+2

Получение интерференционных картин делением волнового фронта (метод Юнга) и делением амплитуды (метод Френеля)

Способов получения волн способных интерферировать в оптике всего два:

  1. деление амплитуды волны,

  2. деление фронта волны.

Метод Юнга

Для получения интерференции методом деления волнового фронта когерентные волны получают как два участка одного фронта волны.

Первым, кто сконструировал установку для демонстрации явления интерференции световых волн, был Т. Юнг. При этом он использовал именно метод деления волнового фронта. Яркий пучок солнечного света попадал на экран с малым отверстием или узкой щелью. Получался как бы свет от точечного, монохроматического источника света ($S$). После дифракции на щели световая волна распространялась до двух маленьких отверстий ($S_1\ и\ S_2$), сделанных в экране ($Э$) рис.1. После очередной дифракции два расходящихся пучка света перекрывали друг друга, и так как являлись когерентными, при наложении давали интерференционную картину. При этом расстояния:

Статья: Получение интерференционных картин делением волнового фронта (метод Юнга) и делением амплитуды (метод Френеля)
Найди решение своей задачи среди 1 000 000 ответов

Данные отверстия работают как вторичные монохроматические, точечные источники. Световые пучки вторичных источников перекрываются за экраном $Э$ (рис.1). Картина интерференции наблюдается в области перекрывания данных световых пучков.



Рисунок 1.

Пусть интерференционная картина наблюдается в плоскости $XOY$, перпендикулярной к нормали $CO$, проведенной к середине отрезка, соединяющего точки, в которых находятся вторичные источники света. $Ось X$ выберем параллельную отрезку $S_1S_2$ (рис.2). При этом $d$ -- расстояние между отверстиями, $a$ -- расстояние между отрезком $S_1S_2$ и плоскостью наблюдения.



Рисунок 2.

«Получение интерференционных картин делением волнового фронта (метод Юнга) и делением амплитуды (метод Френеля)» 👇
Помощь эксперта по теме работы
Найти эксперта
Решение задач от ИИ за 2 минуты
Решить задачу
Найди решение своей задачи среди 1 000 000 ответов
Найти

Для точки $P(x,y)$ (рис.2), которая находится в плоскости наблюдения, имеем:

Из формул (2) и (3) следует, что:

Разность путей света от источников до точки $P$ можно представить как:

Интерференционная картина будет наблюдаться только в случае, если $d\ll a$. Если $x,\ y\ll a$, то:

В таком случае имеем:

Оптическая разность хода, следовательно, равна:

При этом разность фаз имеет вид:

Так как угол $S_1PS_2$ мал, то часто считают, что волны от обоих источников движутся по одному направлению, максимумы интенсивности в таком случае будут при:

минимумы при:

Так, интерференционная картина около точки $О$ (рис.2) состоит из интерференционных полос, которые лежат на одинаковых расстояниях и направлены под прямым углом к линии $S_1S_2$.

Необходимо отметить, что расстояние между щелями $S_{1\ }и\ S_2$ должно быть велико в сравнении с шириной щелей. Один из способов получения щелей придумал Рэлей. Он стеклянные пластинки покрывал тонким слоем серебра, делая их непрозрачными. На серебряном слое одно пластинки лезвием бритвы делалась одна линия. На другой пластинке проводили две параллельные линии. Данные линии использовались как щели.

Если применять лазеры, для опыта Юнга, то можно обойтись без первой щели.

Метод Френеля

Вторым способом создания интерференционной картины является метод деления амплитуды волны. Его смысл заключается в расщеплении волны света на полупрозрачной пластине на две когерентные волны. Фронт волны сохраняется, изменяется только направление его движения.

Одним из методов получения когерентных источников света в данном случае, может служить устройство, которое называют зеркалами Френеля. В этом устройстве свет от точёного источника S падает на два плоских зеркала $З_1$ и $З_2$, которые расположены под небольшим углом друг к другу ($\alpha $). При отражении свет образует два мнимых когерентных источника $S_1$ и $S_2\ (рис.3).$ Плоскость $SS_1S_2$, перпендикулярна к линии пересечения зеркал, $A$ -- точка пересечения. Если расстояние $SA=b$, то $S_1A=S_2A=b$. Перпендикуляр к середине отрезка $S_1S_2$ проходит через точку $А$. Расстояние между $S_1$ и $S_2$ равно:



Рисунок 3.

Угол $\varphi $, под которым из точки O видно расстояние $S_1S_2$, будет равен:

В таком случае $\triangle x$ равно:

Угол $\varphi $ можно измерить по шкале зрительной трубы. Для этого трубу размещают в точке $О$ и устанавливают ее так, чтобы отчетливо видеть изображения $S_1\ и\ S_2,\ S.\ $В таком случае легко найти длину волны $\lambda $, используя выражение:

Ширина области перекрытия световых пучков равна $2a\alpha $, значит количество интерференционных полос, которые можно наблюдать ($N$) равно:

В опыте Френеля интерференционная картина искажена дифракцией на ребре, по которому пересекаются зеркала. Полосы интерференции можно наблюдать на белом матовом экране или матовом стекле (на задней стороне).

Пример 1

Задание: В опыте Юнга расстояние между щелями равно $d=0,5 мм$, длина волны света $\lambda $=0,6мкм. Ширина интерференционных полос при этом равна $\triangle x=1,2\ мм.\ $Чему равно расстояние от экрана до щелей ($a$) в данном опыте?

Решение:

В опыте Юнга интерференционные максимумы наблюдаются в точках, описанных выражением:

\[x_{max}=\frac{ma\lambda }{nd}\left(m=0,\pm 1,\pm 2\dots \right)\left(1.1\right).\]

Ширина первого интерференционного максимума при этом будет равна:

\[\triangle x=\frac{a\lambda }{nd}\left(1.2\right).\]

Выразим из (1.2) искомое расстояние, получим:

\[a=\frac{\triangle xnd}{\lambda },\]

где для воздуха в обычных условиях $n=1$. Проведем вычисления:

\[a=\frac{1,2\cdot 0,5\cdot {10}^{-3}}{6\cdot {10}^{-7}}=1(м)\]

Ответ: $a=1м.$

Пример 2

Задание: В опытах с зеркалами Френеля расстояние между мнимыми источниками света равно $d,$ расстояние от них до экрана $l$. В желтом свете ширина интерференционных полос равна $\triangle x\ .\ $Какова длина волны желтого цвета?

Решение:

Запишем условие получения интерференционных максимумов при сложении двух когерентных волн:

\[\triangle =\pm m\lambda \ \left(m=0,1,2\dots \right)\left(2.1\right),\]

где $\triangle $ - оптическая разность хода волн. Она равна (рис.4):

\[\triangle =\frac{xd}{l}\left(2.2\right).\]

приравняем правые части выражений (2.1) и (2.2), получим:

\[\frac{xd}{l}=\pm mл\to x_{max}=\pm m\frac{l}{d}\lambda \left(2.3\right).\]

В таком случае запишем, что:

\[\triangle x=\frac{\lambda l}{d}\to \lambda =\frac{\triangle xd}{l}.\]

Ответ: $\lambda =\frac{\triangle xd}{l}.$



Рисунок 4.

Воспользуйся нейросетью от Автор24
Не понимаешь, как писать работу?
Попробовать ИИ
Дата последнего обновления статьи: 26.02.2024
Найди решение своей задачи среди 1 000 000 ответов
Крупнейшая русскоязычная библиотека студенческих решенных задач
Все самое важное и интересное в Telegram

Все сервисы Справочника в твоем телефоне! Просто напиши Боту, что ты ищешь и он быстро найдет нужную статью, лекцию или пособие для тебя!

Перейти в Telegram Bot