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Аннотация.  
Актуальность и цели. В математической кибернетике одним из основных 

направлений исследований является изучение работы управляющих систем. 
Управляющие системы являются моделями реальных вычислительных 
устройств. К таким моделям относятся, например, схемы из функциональных 
элементов, ветвящиеся и неветвящиеся программы и др. Актуальность этих 
исследований как раз и связана с многочисленными приложениями, возника-
ющими в различных областях науки и техники. В данной статье исследуется 
надежность неветвящихся программ с оператором условной остановки. Как 
показывают исследования, применение операторов условной остановки (стоп-
операторов) позволяет значительно повысить надежность неветвящихся про-
грамм. В работе рассматривается один частный случай: реализация булевых 
функций неветвящимися программами в полном конечном базисе, содержа-
щем функцию штрих Шеффера. Предполагается, что операторы как вычисли-
тельные, так и условной остановки независимо друг от друга могут перехо-
дить в неисправные состояния: произвольного типа (вычислительные операто-
ры) и первого и второго рода (стоп-операторы). 

Материалы и методы. Используются методы дискретной математики, ма-
тематической кибернетики, математического анализа.  

Результаты. В полном конечном базисе, содержащем штрих Шеффера, 
найдена верхняя оценка ненадежности неветвящихся программ с оператором 
условной остановки, данная оценка стремится к нулю с ростом числа итераций. 

Выводы. В полном конечном базисе, содержащем функцию штрих Шеффе-
ра, любую булеву функцию можно реализовать неветвящейся программой  
с ненадежными операторами (как вычислительными, так и остановки), причем 
ненадежность такой программы может быть сколь угодно мала. 

Ключевые слова: булева функция, схема из функциональных элементов, 
неветвящаяся программа, оператор условной остановки, синтез, надежность, 
базис, штрих Шеффера, неисправность произвольного типа.  

 
S. M. Grabovskaya  

ON RELIABILITY OF NON-BRANCHING PROGRAMS  
IN A BASIS CONTAINING THE SHEFFER STROKE 

 
Abstract. 
Background. In mathematical cybernetics, one of the main areas of research is 

the study of control systems. Control systems are models of real computing devices. 
Such models include, for example, circuits of functional elements, branching and 
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non-branching programs, etc. The relevance of these studies is connected with nu-
merous applications arising in various fields of science and technology. In this arti-
cle the reliability of non-branching programs with conditional stop operator is 
searched. Studies show that the use of conditional stop operators can significantly 
raise the reliability of non-branching programs. In this paper one particular case is 
considered, namely, the implementation of Boolean functions by non-branching 
programs in a complete finite basis containing the Scheffer stroke function. It is as-
sumed that both computational and conditional stop operators can independently 
switch to the fault conditions: of an arbitrary type (computational operators) and of 
the first and second kind (stop operators). 

Materials and methods. Methods of discrete mathematics, mathematical cyber-
netics, mathematical analysis were used. 

Results. In the considered basis an upper bound of the unreliability of non-
branching programs with a conditional stop operator is found, this estimate tends to 
zero with increasing number of iterations. 

Conclusions. In a complete finite basis containing the Scheffer stroke any Bool-
ean function can be implemented by an arbitrarily reliable non-branching program 
with unreliable operators (both computational and stopping), at that failures of com-
putational operators are arbitrary. 

Keywords: Boolean function, circuit of functional elements, non-branching pro-
gram, conditional stop operator, synthesis, reliability, basis, Scheffer stroke, fault of 
an arbitrary type. 

 
Данная статья посвящена исследованию ненадежности неветвящейся 

программы с оператором условной остановки, реализующей произвольную 
булеву функцию в полном конечном базисе, содержащем штрих Шеффера, 
т.е. 1 2x x∨ .  

Математическая теория синтеза, сложности и надежности управляю-
щих систем находит практическое применение во многих областях приклад-
ных научных исследований. Среди управляющих систем большой интерес 
вызывают неветвящиеся программы с оператором условной остановки. Поня-
тие неветвящейся программы с оператором условной остановки (его еще 
называют стоп-оператором) [1, 2] тесно связано с понятием схемы из функ-
циональных элементов. В некотором смысле неветвящаяся программа с опе-
ратором условной остановки является обобщением схемы из функциональ-
ных элементов. Стоп-оператор представляет собой команду условной оста-
новки, позволяющую досрочно прекратить выполнение программы при по-
ступлении единицы на его вход. Ниже будет показано, что использование 
стоп-операторов приводит к значительному повышению надежности исход-
ных схем.  

Будем считать, что вычислительные операторы программы независимо 
друг от друга могут «ломаться» произвольным образом [3, с. 480].  

Предполагается, что операторы условной остановки также ненадежны и 
независимо друг от друга подвержены неисправностям двух типов: первого и 
второго рода. При неисправности первого рода стоп-оператор неправильно 
реагирует на поступление единицы на вход: он с вероятностью δ (δ ∈ (0, 1/2)) 
не срабатывает, и, следовательно, работа программы продолжается. А при 
неисправности второго рода стоп-оператор неправильно реагирует на по-
ступление нуля на вход: он с вероятностью η (η ∈ (0, 1/2)) срабатывает, и, 
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следовательно, работа программы прекращается. Введем обозначение 
μ = max{δ, η}. 

Считается, что программа с ненадежными операторами реализует буле-
ву функцию f(x) (x = (x1, …, xn), n ∈ N), если при отсутствии неисправностей 
во всех ее операторах на каждом входном наборе a (a = (a1, a2, …, an)) значе-
ние выходной переменной z равно f(a). 

Замечание 1. Схему из функциональных элементов (ФЭ) можно счи-
тать неветвящейся программой, в которой отсутствуют стоп-операторы. 

Ненадежность N(Pr) программы Pr есть максимальная вероятность 
ошибки на выходе программы Pr при всевозможных входных наборах. 
Надежность программы Pr равна 1 – N(Pr).  

Обозначим N(B) = max{N(E1), ..., N(Eq)}, т.е. N(B) – ненадежность само-
го ненадежного («плохого») из базисных элементов. 

Для схем из ненадежных функциональных элементов, подверженных 
произвольным неисправностям, получен следующий результат. 

Теорема 1 [4]. В произвольном полном конечном базис В любую 
булеву функцию f можно реализовать схемой S с ненадежностью N(S), не 
превышающей 5,17 · N(B), где N(B) ∈ (0, 1/960]. 

Для улучшения надежности исходных схем (программ) будем исполь-

зовать функцию g(x1, x2, x3, x4) вида 31 2 4 5
1 2 3 4( )x x x xσσ σ σ σ∨  (σi ∈ {0, 1},  

i ∈ {1, 2, 3, 4, 5}). Обратимся к ранее доказанной теореме 2. 
Теорема 2 [5]. Пусть B – полный конечный базис; пусть существует та-

кое N, что любую булеву функцию f можно реализовать неветвящейся про-
граммой Rf с ненадежностью N(Rf) ≤ N. Пусть g(x1, x2, x3, x4) – функция вида 

31 2 4 5
1 2 3 4( )x x x xσσ σ σ σ∨  (σi ∈ {0, 1}, i ∈ {1, 2, 3, 4, 5}), Prg – программа, реализу-

ющая функцию g(x1, x2, x3, x4), а N(Prg) – ненадежность программы Prg. Тогда 
любую булеву функцию f в этом базисе можно реализовать такой программой 
Prf, что справедливо неравенство  

N(Prf) ≤ max{ν1,ν0} + 4N· N(Prg) + 4N 2,  

где ν1 и ν0 – вероятности ошибок программы Prg на наборах 1 2 3 4(σ , σ , σ , σ )   

и 1 2 3 4(σ , σ , σ , σ )  соответственно. 

Теперь, когда сформулированы необходимые понятия, утверждения и 
теоремы, перейдем к изложению полученных результатов. 

Лемма 1. В полном конечном базисе, содержащем штрих Шеффера 

1 2x x∨ , функцию g(x1, x2, x3, x4) = x1x2 ∨ x3x4 можно реализовать неветвящейся 

программой Prg с оператором условной остановки, для которой 
max{ν0, ν1} = 0 и N(Prg) ≤ 2(N(B) + μ), где ν0, ν1 – вероятности ошибок про-
граммы Prg на наборах (1, 1, 1, 1) и (0, 0, 0, 0) соответственно, а μ = max{δ,η}. 

Доказательство. Пусть полный конечный базис В содержит функцию  
e∨(x1, x2) = 1 2x x∨ . Построим в этом базисе неветвящуюся программу Prg, ре-

ализующую функцию g(x1, x2, x3, x4) = x1x2 ∨ x3x4: 
z = x1 
y1 = 1 2x x∨  

y2= 1 1y y∨  
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stop(y2) 
z = x3 
stop(x4) 
z = x4 

Найдем вероятности ν0 и ν1 ошибок программы Prg на наборах 
(1, 1, 1, 1) и (0, 0, 0, 0) соответственно. Пусть набор b = (1, 1, 1, 1), тогда 
g(b) = 1. При возникновении неисправностей вычислительных операторов, 
либо стоп-операторов на выходе программы непременно появится значение 
одной из свободных переменных x1, x3 или x4, которое равно 1. Следователь-
но, ν0 = 0. Пусть теперь набор b = (0, 0, 0, 0), тогда g(b) = 0. Рассуждая анало-
гично предыдущему случаю, получим ν1 = 0. Таким образом, max{ν0, ν1} = 0.  

Поскольку программа Prg содержит два вычислительных оператора 
(ненадежность каждого из них равна N(E∨) и два стоп-оператора (ненадеж-
ность каждого из них не превосходит μ), ее ненадежность удовлетворяет не-
равенству N(Prg) ≤ 2N(E∨) + 2μ. Очевидно, что N(E∨) ≤ N(B). Таким образом, 
N(Prg) ≤ 2(N(B) + μ).  

Лемма 1 доказана. 
Теорема 3. Если полный конечный базис B содержит функцию 1 2x x∨ , 

то для любой булевой функции f при ∀t ∈ N можно построить такую невет-
вящуюся программу Prf с оператором условной остановки, реализующую f, 
что N(Prf) ≤ [0,84]t · 5,17 · N(B) при N(B) ∈ (0, 1/960] и μ ∈ (0, 1/10]. 

Доказательство. Пусть В – полный конечный базис, содержащий 
функцию 1 2x x∨ ; операторы условной остановки и вычислительные операто-

ры некоторой неветвящейся программы ненадежны. Пусть N(B) ∈ (0, 1/960] и 
μ ∈ (0, 1/10]. 

Пусть f – любая булева функция. Реализуем ее схемой S, ненадежность 
которой N(S) ≤ 5,17 · N(B) при N(B) ∈ (0, 1/960] (см. теорему 1).  

Согласно лемме 1 можно построить такую программу Prg, что  
max{ν1, ν0} = 0 и N(Prg) ≤ 2N(B) + 2μ. Чтобы построить программу Prf

(1), реа-
лизующую функцию f, воспользуемся теоремой 2, взяв в качестве программы 
Rf схему S (см. замечание 1) и полагая N = 5,17 · N(B). Тогда ненадежность 
программы Prf

(1) удовлетворяет неравенству 

N(Prf
(1)) ≤ 4N(N(Prg + N) ≤ 4N(2μ + 2N(B) + 5,17N(B)) ≤ 

≤ 4N(0,2 + 7,17/960) ≤ 0,83N, 

т.е. N(Prf
(1)) ≤ 0,83N, тогда верно неравенство N(Prf

(1)) ≤ 0,83·5,17·N(B).  
Выполним еще один шаг итерации, т.е. построим программу Prf

(2), реа-
лизующую функцию f, но заменим N на 0,83N и в качестве Rf возьмем уже 
построенную программу Prf

(1). Тогда справедливо неравенство 

N(Prf
(2)) ≤ 4·0,83N(2μ + 2N(B) + 0,83N) ≤  

≤ 4·0,83N(0,2 + 2 / 960 + 0,83·5,17 / 960) ≤ (0,83)2N. 

Далее методом индукции по числу итераций t нетрудно доказать, что 
функцию f можно реализовать программой Prf

(t), ненадежность которой 
N(Prf

(t)) ≤ (0,83)tN.  
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Действительно, выполним индуктивный переход. Пусть функцию f 
можно реализовать программой Prf

(t–1), ненадежность которой  
N(Prf

(t–1)) ≤ (0,83)t–1N. Проделаем еще одну итерацию, т.е. построим програм-
му Prf

(t) и оценим ее ненадежность с помощью теоремы 2:  

N(Prf
(t)) ≤ 4·(0,83)t–1N(2μ + 2N(B) + (0,83)t–1N) ≤ 

≤ 4·(0,83)t–1N(0,2 + 2 / 960 + (0,83)t–1N) ≤ 

≤ 4·(0,83)t–1N(0,2 + 2 / 960 + 0,83·5,17·N(B)) ≤ 

≤ 4·(0,83)t–1N(0,2 + 2 / 960 + 0,83·5,17/960) ≤ 

≤ 4·(0,83)t–1N·0,83 = (0,83)tN. 

Поскольку N = 5,17·N(B), функцию f можно реализовать программой 
Prf

(t), ненадежность которой N(Prf
(t)) ≤ (0,83)t·5,17N(B). 

Теорема 3 доказана. 
Следствие 1. Если полный конечный базис B содержит функцию 

1 2x x∨ , то любую булеву функцию f можно реализовать сколь угодно надеж-

ной неветвящейся программой Prf с оператором условной остановки при 
N(B) ∈ (0, 1/960] и μ ∈ (0, 1/10]. 

Доказательство. Пусть p – произвольное, сколь угодно малое положи-
тельное число. Покажем, что проделав достаточное число итераций, функцию 
f можно реализовать программой, ненадежность которой не больше p.  

Действительно, по теореме 3 функцию f можно реализовать програм-
мой, ненадежность которой N(Prf

(t)) ≤ (0,83)t · 5,17 · N(B) ≤ (0,83)t · 5,17 / 960.  
Решим неравенство (0,83)t·5,17 / 960 ≤ p относительно переменной t и 

получим (0,83)t ≤ 960p / 5,17, откуда t ≥ log0,83(960p / 5,17). Выберем 
наименьшее целое t, удовлетворяющее последнему неравенству (обозначим 
его t0). Тогда программа Prf

(t
0

) функционирует с ненадежностью N(Prf
(t

0
)) ≤ p.  

Следствие 1 доказано. 
Таким образом, если полный конечный базис содержит функцию 

штрих Шеффера, то любую булеву функцию можно реализовать сколь угод-
но надежной неветвящейся программой, операторы которой, как вычисли-
тельные, так и остановки, ненадежны, причем неисправности вычислитель-
ных операторов произвольные, N(B) ∈ (0, 1/960] и μ ∈ (0, 1/10].  

Отметим, что повышение надежности исходных схем при помощи схем 
из функциональных элементов (т.е. неветвящихся программ без стоп-
операторов) не столь эффективно как неветвящимися программами с опера-
тором условной остановки. Пока ни в одном из базисов при различных типах 
неисправностей функциональных элементов не удалось добиться ненадежно-
сти схемы, сколь угодно близкой к 0; во многих случаях доказана невозмож-
ность этого.  
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