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Vbinary: ещё раз о представлении целых чисел с
переменной разрядностью

Аннотация. В статье представлен параметризованный префиксный код
переменной длины для кодирования целых чисел. Код рассматривается
на примерах в сравнении с существующими кодами, в том числе кодами
Golomb/Rice и Elias. Предлагается система записи параметров кода в виде
текстовой строки, позволяющая точно идентифицировать используемый
вариант кода.

В коде Vbinary используется новый n-арный метод расширения разряд-
ности кодовых слов, благодаря которому достигается гибкость: возможность
работы с потоками битов или байтов, эффективное кодирование малых или
больших чисел, согласование распределения длин кодовых слов с распре-
делением входных данных, оптимизация для повышения эффективности
кодирования и декодирования. К потенциальным применениям кода Vbinary
относятся сетевые протоколы, представление данных в оперативной памяти и
на диске, а также применение на финальных стадиях алгоритмов компрессии
данных.

Ключевые слова и фразы: кодирование целых чисел, коды с переменной длиной, префиксный
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Введение

В повседневной практике программисты регулярно занимаются
описанием структур данных и сталкиваются с необходимостью выбора
разрядности полей данных. Этот выбор часто оказывается непростым,
особенно когда описываемая структура данных представляет собой за-
головок пакета в каком-либо сетевом протоколе: если выбрать неудачно,
изменение длины повлечёт необходимость обновления программного
обеспечения на всех устройствах, использующих протокол.
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Желание сэкономить место в памяти или объём сетевого трафика
подталкивает выбрать минимально возможную разрядность поля, но
приходится также думать о будущих расширениях и о том, что вообще
произвольные ограничения в программе это нехорошо [1]. Выбор
иногда требует совершенно непропорциональных задаче усилий, и
заканчивается компромиссным результатом, который впоследствии
оказывается неудачным. Предвидя эту ситуацию, программисты
прибегают к кодам переменной длины.

Существует множество кодов переменной длины, например унарное
кодирование, коды Голомба [2], коды Элиаса: γ, δ, ω [3]. Но при
выборе кода для своего приложения программист снова сталкивается с
трудностями: кодовые слова с длиной не кратной 8 могут не вписываться
в определяемую структуру данных, распределение длин кодовых
слов может не подходить к распределению кодируемых данных,
вычислительные затраты на кодирование и декодирование кода
переменной длины могут быть неприемлемы для высокоскоростного
приложения.

В итоге самым популярным решением оказывается кодирование
байтовой цепочкой переменной длины: в каждом байте 7 битов данных
и один бит — признак конца цепочки (пример реализации: [14]). Этот
код не особенно хорош как в отношении эффективности кодирования1,
так и в отношении затрат на кодирование/декодирование, но понятен и
прост в реализации, и потому широко распространён.

Мы попробуем улучшить эту ситуацию при помощи нового па-
раметризованного кода. Код Vbinary является параметризованным
префиксным кодом переменной длины, который за счёт рационального
выбора параметров можно адаптировать к нуждам конкретного
приложения во всех трёх аспектах: эффективность кодирования, распре-
деление длин кодовых слов и затраты на кодирование/декодирование.

1. Организация кода Vbinary

В качестве простейшего примера рассмотрим код vbinary2x (табли-
ца 1). Как указано в его имени, этот код имеет базовую длину 2 бита —
это длина самого короткого кодового слова. Из четырех значений,
которые может содержать базовая бинарная группа, три используются
для представления целых чисел 0..2.

1определяемой как число битов в кодовом слове, необходимое для представления
заданного кодируемого числа
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Таблица 1. Простые коды семейства Vbinary

кодируемое число vbinary2x vbinary2x2 vbinary2x3x

0 00 00 00
1 01 01 01
2 10 10 10
3 1100 1100 11000
4 1101 1101 11001
5 1110 1110 11010
6 111100 1111 11011
7 111101 none 11100
8 111110 none 11101
9 11111100 none 11110

10 ... none 11111000
... ... none ...

Буква x в имени кода означает, что для представления следующих
чисел длину кодового слова нужно расширить — поэтому последнее из
четырёх значений (3, в бинарном виде 11) используется для расширения.
Оно означает, что за базовыми битами следуют ещё два бита, которые
называются первым уровнем расширения. Первый уровень расширения
позволяет закодировать ещё три числа: 3..5, а для представления
бо́льших чисел добавляется следующий уровень расширения.

Код vbinary2x бесконечный: добавляя новые уровни расширения,
можно закодировать сколь угодно большое целое число. Для сравнения,
код vbinary2x2 (таблица 1) конечный — на это указывает отсутствие
буквы x после ширины последнего присутствующего в имени уровня
расширения.

Код vbinary2x2 позволяет представить всего 7 целочисленных значе-
ний. В конечных кодах последнее значение последней битовой группы
не зарезервировано для расширения, а представляет очередное число.
Так, в коде vbinary2x2 последнее представимое число (6) соответствует
кодовому слову 1111, которое в коде vbinary2x зарезервировано для
расширения (добавления уровня 2).

Имена кодов Vbinary по сути представляют собой перечисление
правил расширения, хотя эти правила могут быть сложнее, чем уже
встречавшиеся. Все коды в таблице 1 имеют только одно значение,
зарезервированное для расширения на каждом уровне, но в принципе
на каждом уровне мы можем зарезервировать до 2wi значений, где wi

это разрядность уровня. Зарезервировав более одного значения, мы
получаем возможность множественных (n-арных) расширений, которая
позволяет получить коды с интересными свойствами.
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Рис. 1. Максимум одно нетерминальное расширение на
каждом уровне. Код vbinary6x(6x,4,8)(8,6x,10)(6x,7).

Только одно из нескольких расширений («нетерминальное расшире-
ние») может иметь дальнейшие расширения, остальные расширения на
том же уровне используются исключительно для представления коди-
руемых чисел («терминальные расширения») (рис. 1). Это ограничение
(«почти линейная структура») введено, чтобы избежать загромож-
дения имён вложенными скобками, выражающими произвольную
древовидную структуру.

Далее мы будем рассматривать коды с множественными расширени-
ями, имена которых имеют более сложную структуру. Полное описание
синтаксиса имён кодов семейства Vbinary приведено в Приложении A.

Рассмотрим код vbinary1x(8,1x) (таблица 2). Уровень расширения 1
задан конструкцией (8,1x), означающей что уровень имеет два варианта
и, соответственно, на уровне 0 два значения зарезервировано для
расширения (рис. 2). Поскольку ширина базового уровня всего один бит,
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Таблица 2. vbinary1x(8,1x) совпадает с кодом Golomb(256)

кодируемое число vbinary1x(8,1x) длина кода, бит

0 000000000 9
... ... 9
255 011111111 9
256 1000000000 10
... ... 10
511 1011111111 10
512 11000000000 11
... ... 11
767 11011111111 11
... ... ⩾12

Рис. 2. Уровни расширения для кода vbinary1x(8,1x)

на нём не остаётся значений для представления чисел, оба значения
используются для расширения.

Первое расширение — терминальное, позволяющее представить 28

чисел. Второе расширение — нетерминальное расширение с разрядно-
стью 1 бит, которое работает в точности так же, как базовый уровень
(оба значения используются для дальнейшего расширения). Поскольку
спецификация последнего расширения в перечне содержит букву x, код
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Таблица 3. vbinary1x2x(2,1x)(a1,a0) эквивалентен коду Elias γ

кодируемое число vbinary1x2x(2,1x)(a1,a0) длина кода, бит

0 0 1
1 100 3
2 101 3
3 11000 5
4 11001 5
5 11010 5
6 11011 5
7 1110000 7
8 1110001 7
9 1110010 7

10 1110011 7
11 1110100 7
12 1110101 7
13 1110110 7
14 1110111 7
15 111100000 9
... ... ⩾9

vbinary1x(8,1x) является бесконечным: последнее правило расширения
применяется столько раз, сколько потребуется для представления
заданного числа.

Следующий пример — код vbinary1x2x(2,1x)(a1,a0). В имени кода
три спецификации уровней (базовый, уровень 1, уровень 2), а также
новая конструкция — повторитель (a1,a0), который используется
для генерации уровней 3, 4 и т.д. Это аддитивный повторитель,
указывающий что для генерации уровня i+ 1 нужно прибавить 1 и 0
соответственно к разрядности вариантов расширения уровня i. Таким
образом, все следующие имена задают один и тот же код:

vbinary1x2x(2,1x)(a1,a0)
vbinary1x2x(2,1x)(3,1x)(a1,a0)
vbinary1x2x(2,1x)(3,1x)(4,1x)(a1,a0)
vbinary1x2x(2,1x)(3,1x)(4,1x)(5,1x)(a1,a0)
. . .

Благодаря аддитивному повторителю, каждый вновь сгенерирован-
ный уровень представляет вдвое больше чисел, чем предыдущий:
4, 8, 16, . . . (таблица 3).

Полный синтаксис компонентов повторителя (mKaC) позволяет
задавать увеличение разрядности полей в смешанной арифметико-
геометрической прогрессии: wi+1 = Kwi + C, где множитель K и
слагаемое C могут быть целыми числами или обыкновенными дробями.
Десятичные дроби не используются, поскольку их менее удобно
обрабатывать на процессорах, не имеющих поддержки операций с
плавающей точкой.
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Таблица 4. vbinary1x совпадает с Unary и с Golomb(1)

кодируемое число vbinary1x длина кода, бит

0 0 1
1 10 2
2 110 3
3 1110 4
4 11110 5
5 111110 6

... ... ...

Медленный рост разрядности поддерживается следующим образом.
Вычисления при генерации уровней (умножение на обыкновенную
дробь, сложение с обыкновенной дробью) выполняются при помощи
арифметики с фиксированной точкой с весом2 младшего разряда
1/16. Целые части результатов вычисления используются в качестве
ширин вариантов расширения на сгенерированном уровне, а полный
результат с дробной частью сохраняется и используется в качестве
входных данных при генерации следующего уровня. Таким образом,
повторитель (a1/3) задаёт увеличение длины на 1 бит на каждом
третьем шаге, а повторитель (m4/3) даёт экспоненциальный рост
разрядности со скоростью (4/3)n.

Порядок использования значений полей на уровне с вариантами
следующий:
(1) используются бинарные значения каждого из вариантов рас-

ширения в порядке, в котором они перечислены в имени кода.
В нетерминальных вариантах пропускаются (не назначаются
кодируемым числам) значения, зарезервированные для расширения;

(2) пропущенные зарезервированные значения используются при
обработке следующего уровня в соответствии с пунктом 1.

На этом описание синтаксиса и семантики имён кодов семейства
Vbinary закончено. Синтаксис задаёт обширное семейство кодов, которое
мы сейчас рассмотрим в сравнении с другими кодами переменной
длины.

2. Vbinary в сравнении с другими кодами

Как некоторые другие параметризованные коды [2,5], семейство
Vbinary включает в себя код, совпадающий с унарным кодированием:
vbinary1x (таблица 4).

2точность выбрана небольшая, чтобы вычисления были эффективны на
8-битных архитектурах
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Таблица 5. vbinary1x(7,1x)(a7,a0) близок к коду varint [14]

кодируемое число vbinary1x(7,1x)(a7,a0) длина кода, бит

0 00000000 8
1 00000001 8

... ... ...
127 01111111 8
128 1000000000000000 8
... ... ...
255 1000000001111111 16
256 1000000010000000 16
... ... ...

16511 1011111111111111 16
16512 110000000000000000000000 24

... ... ...
2113663 110111111111111111111111 24

... ... ...

Мы видели, что код vbinary1x(8,1x) совпадает с кодом Golomb(256).
Можно обобщить: vbinary1x(n,1x) совпадает с Golomb(2n).

Мы также рассматривали код vbinary1x2x(2,1x)(a1,a0) (таблица 3),
который эквивалентен коду Elias γ [3]. Отличия состоят в инверсии
унарной части и сдвиге области определения на 1.

Ещё один родственный код это упомянутое во Введении кодирова-
ние цепочкой байтов переменной длины. Разновидность этого кода,
используемая в системе Git [14], называется varint. Она эквивалентна
vbinary1x(7,1x)(a7,a0) (таблица 5). Отличие состоит в порядке битов: в
varint биты-признаки конца байтовой последовательности содержатся
в каждом байте, а в vbinary1x(7,1x)(a7,a0) они собраны вместе и
располагаются в начале кодового слова как унарный префикс.

Код start-step-stop [4] это конечный пaрaметризованный префиксный
код, организованный подобно коду Elias γ, но бинарная часть в нём
увеличивается не по одному биту, а на величину, заданную параметром
step. Этот код при любом наборе параметров имеет точный аналог в
семействе Vbinary: например, код start-step-stop(3,2,9) совпадает с
vbinary1x(3,1x)(5,1x)(7,9). Мы не можем использовать в определении
кода Vbinary повторитель, поскольку повторители в Vbinary не имеют
ограничителя (stop). Так, код vbinary1x(3,1x)(a2,a0) похож на start-step-
stop(3,2,9), но является бесконечным кодом и поэтому длиннее на один
бит в интервале значений 168..679.

Код Start/Stop [5] тоже является конечным параметризованным
префиксным кодом. Код параметризуется вектором длин бинарных
полей, за счёт чего может быть оптимизирован под известное рас-
пределение кодируемых данных. Свойство «префиксности» кода
достигается при помощи унарного кодирования числа бинарных полей,
но биты унарного числа распределены по кодовому слову, как в
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Таблица 6. Сравнительная эффективность кодов в
диапазоне значений 0..16

Код min avg median max макс. значение

binary 5 5 5 5 32
Unary 1 8.5 8 17 unlimited
Elias γ 1 5.94 7 9 unlimited
Elias δ 1 6.53 8 9 unlimited
Elias ω 1 5.76 7 11 unlimited
Golomb(16) 5 5.06 5 6 unlimited
Golomb(8) 4 4.59 5 6 unlimited
Golomb(4) 3 4.65 5 7 unlimited
vbinary4x1x 4 4.1 4 6 unlimited
vbinary4x2x 4 4.24 4 6 unlimited
vbinary3x(3,3x) 3 4.94 6 6 unlimited
vbinary3x(2,2,2) 3 4.41 5 5 17
vbinary2x(3,4x) 2 5.06 5 6 unlimited
vbinary1x2x(2,3x) 1 5.59 6 8 unlimited
vbinary1x2x(2,2,3x)3x 1 5.06 5 6 unlimited

упомянутом выше коде varint. Код Start/Stop не имеет точных аналогов
в семействе Vbinary, но идеологически он ближе к Vbinary, чем все
ранее рассмотренные коды.

Все ранее рассмотренные коды реализуют свойство «префиксности»
с помощью той или иной формы унарного кодирования. Поскольку
унарное кодирование представимо в семействе Vbinary, большинство
этих кодов имеют аналоги в семействе Vbinary. Однако используемый в
Vbinary метод n-арного расширения даёт гораздо больше возможностей,
чем унарные префиксы.

Коды, в которых свойство «префиксности» реализуется другими
методами, например код Левенштейна W2′ [11], коды Elias δ и ω [3],
и более современные [7,8], не имеют прямых аналогов в семействе
Vbinary. Цитируя [4], «эти коды имеют хорошие асимптотические
характеристики для очень больших чисел», но для представления
малых чисел они не очень эффективны.

Значительная работа в области кодирования малых чисел с
переменной длиной представлена в [9]. Эти коды также не имеют
эквивалентов в семействе Vbinary. Они демонстрируют улучшение по
сравнению с кодом Elias γ для определённых распределений кодируемых
данных, но не имеют гибкости, которую дают параметризованные коды.

Благодаря параметризации и n-арному расширению, код Vbinary
позволяет получить хорошие характеристики как в области малых,
так и в области больших чисел. Мы рассмотрим это на примерах в
следующих двух разделах.
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Таблица 7. Коды Vbinary, упомянутые в таблице 6

integer vbinary vbinary vbinary vbinary vbinary vbinary vbinary
value 4x1x 4x2x 3x(3,3x) 3x(2,2,2) 2x(3,4x) 1x2x(2,3x) 1x2x(2,2,3x)3x

0 0000 0000 000 000 00 0 0
1 0001 0001 001 001 01 100 100
2 0010 0010 010 010 10000 101 10100
3 0011 0011 011 011 10001 11000 10101
4 0100 0100 100 100 10010 11001 10110
5 0101 0101 101 10100 10011 11010 10111
6 0110 0110 110000 10101 10100 11011 11000
7 0111 0111 110001 10110 10101 111000 11001
8 1000 1000 110010 10111 10110 111001 11010
9 1001 1001 110100 11000 10111 111010 11011

10 1010 1010 110101 11001 110000 111011 111000
11 1011 1011 110110 11010 110001 111100 111001
12 1100 1100 110111 11011 110010 111101 111010
13 1101 1101 111000 11100 110011 11111000 111011
14 1110 1110 111001 11101 110100 11111001 111100
15 11110 111100 111010 11110 110101 11111010 111101
16 111110 111101 111011 11111 110110 11111011 111110
17 1111110 111110 111100 none 110111 111111000 111111000
18 11111110 11111100 111101 none 111000 111111001 111111001

3. Представление малых чисел

Предположим, мы разрабатываем сетевой протокол и нужно
определить поле тэга, задающее 17 различных типов записей, а
также предусмотреть возможность добавления тэгов в будущем.
Прямолинейный подход — использовать поле с фиксированной длиной 5
бит. В этом варианте есть возможность расширения, но она ограничена
15 дополнительными тегами. Если же использовать кодирование
с переменной длиной, мы получим возможность неограниченного
расширения, а также возможность экономного кодирования, если
распределение частот появления тегов известно и неравномерно, за
счёт назначения коротких кодовых слов часто встречающимся тегам.

В таблице 6 сведены характеристики ряда кодов при использовании
в описанном сценарии. Для каждого известного кода в таблице нашёлся
код Vbinary, который превосходит его по крайней мере по одной
из характеристик. По таблице кодовых слов (таблица 7) можно
судить о распределении длин кодовых слов Vbinary и выбрать код,
наиболее подходящий для известного распределения частот тегов.
При необходимости можно продолжать подбор параметров Vbinary,
используя свободно доступны программный инструмент [15].

4. Байт-ориентированные коды

Существуют приложения [12], для которых требуется, чтобы
разрядность кодовых слов числа с переменной длиной была кратна
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Таблица 8. Конечный байт-ориентированный код vbinary1x(7,15)

кодируемое число vbinary1x(7,15) длина кода, бит

0 00000000 8
... ... ...
127 01111111 8
128 1000000000000000 16
... ... ...

32895 1111111111111111 16

Таблица 9. Конечный байт-ориентированный код vbinary8x(8,16,24,56)

кодируемое число vbinary8x(8,16,24,56) длина кода, бит

0 00000000 8
1 00000001 8

... ... ...
251 11111011 8
252 1111110000000000 16
... ... ...
507 1111110011111111 16
508 111111010000000000000000 24
... ... ...

508 + 216 − 1 111111011111111111111111 24
508 + 216 11111110000000000000000000000000 32

... ... ...
508 + 216 + 224 − 1 11111110111111111111111111111111 32
508 + 216 + 224 11111111000...(56 zero bits)... 64

... ... ...
508 + 216 + 224 + 256 − 1 11111111111...(56 one bits)... 64

8 (байт-ориентированные коды). Параметры Vbinary позволяют
конструировать байт-ориентированные коды. Мы уже встречали
байт-ориентированный код — vbinary1x(7,1x)(a7,a0) (таблица 5), но
Vbinary позволяет конструировать коды, которые представляют
больше значений в том же числе байтов (таблица 8), или допускают
более эффективное кодирование/декодирование (таблица 9). Имея
конкретные требования к характеристикам кода, можно подобрать и
более подходящие параметры.
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5. Некоторые свойства кодов Vbinary

5.1. Лексикографический порядок

Последовательность кодовых слов в кодах Vbinary упорядоче-
на лексикографически тогда и только тогда, когда расширения на
всех уровнях делаются в последней бинарной группе. Рассмотрим
два конечных кода с максимальной длиной кодового слова 128 бит:
vbinary8x(8,16,24,56x)64 и vbinary8x(8x,16,24,56)112. Первый код лексико-
графически упорядочен и имеет максимальное значение порядка 264, а
второй не упорядочен, но максимальное значение у него порядка 2112.
Таким образом, лексикографический порядок достигается ценой эффек-
тивности кодирования. Если предпочесть эффективность, пожертвовав
порядком, будет невозможно сравнивать числа в коде Vbinary, не
декодировав их предварительно — но это не такая большая потеря, если
код допускает эффективное декодирование.

5.2. Монотонность длин кодовых слов

Во всех кодах переменной длины, встречавшихся автору, длина
кодовых слов монотонно возрастает (не убывает) с увеличением
кодируемого числа: L(v(n)) ⩽ L(v(n+ 1)) для любого n, где L(x)—
количество бит в кодовом слове x, v(n)— функция, кодирующая целое
число n в коде переменной длины. Параметры Vbinary позволяют
определять коды, в которых L(v(n)) не монотонна. Например, в
vbinary8x(8,16,24,56,2) четыре 16-битных кодовых слова назначены
четырём числам на верхней границе диапазона кодируемых чисел, в то
время как максимальная длина кодового слова в этом коде равна 64.

6. Заключение

Vbinary это сильно параметризованный префиксный код с перемен-
ной длиной кодовых слов для кодирования неотрицательных целых
чисел, пригодный как для битoвых, так и для байтовых потоков данных.
Для увеличения длин кодового слова используется оригинальный
приём n-арного расширения, который даёт большие возможности для
настройки кода на конкретное применение. Подбором параметров
можно сконструировать код, эффективный для малых или больших
чисел, имеющий рспределение длин кодовых слов близкое к частотному
распределению кодируемых данных, допускающий эффективное
кодирование/декодирование. Сравнение Vbinary с известными кодами
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переменной длины оставляет впечатление, что подбором парамет-
ров Vbinary под конкретную задачу всегда можно получить более
эффективное кодирование, чем при использовании любого заранее
определённого кода переменной длины. Мы не пытались доказывать
это утверждение.

Код Vbinary может найти применение в сетевых протоколах, в
представлении данных на диске и в оперативной памяти. Возможно,
код Vbinary удастся применить в алгоритмах сжатия данных, где в
настоящее время используются коды Голомба/Райса или другие коды
переменной длины [13] [10].

Мы определили систему записи параметров кода Vbinary, которая
позволит программистам использовать коды Vbinary, ссылаясь на
них по имени, вместо того чтобы изобретать для каждого случая
подходящие коды переменной длины и документировать их. Программ-
ный инструмент для экспериментов с параметрами Vbinary свободно
доступен [15].
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Приложение A. Синтаксис имён кодов Vbinary в нотации ABNF
vbinary-name = "vbinary" basewidth
vbinary-name /= "vbinary" basewidth repeat-rule
vbinary-name /= "vbinary" basewidth "x" [*midlevel lastlevelx]
vbinary-name /= "vbinary" basewidth "x" [*midlevel] lastlevel repeat-rule
midlevel = width "x"

; 1-ary non-terminal extension
midlevel /= "(" 1*(width ",") width "x" ")"
midlevel /= "(" *(width ",") width "x," *(width ",") width ")"

; n-ary non-terminal extensions
lastlevelx = width "x"

; 1-ary non-terminal extension
lastlevel = width

; 1-ary terminal extension
lastlevel /= "(" 1*(width ",") width ")"

; n-ary terminal extension
lastlevel /= "(" 1*(width ",") width "x" ")"
lastlevel /= "(" *(width ",") width "x," *(width ",") width ")"

; n-ary non-terminal extensions
repeat-rule = addmul

; for 1-ary lastlevel
repeat-rule /= "(" 1*(addmul ",") addmul ")"

; for n-ary lastlevel
addmul = add / mul / mul add
add = "a" increment
mul = "m" factor
rational = 1*DIGIT
rational /= 1*DIGIT "/" 1*DIGIT
basewidth = width
width = 1*DIGIT
increment = rational
factor = rational

Sample citation of this publication:
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Systems: Theory and Applications, 2018, 9:4(39), pp. 477–491. (In Russian).
DOI: 10.25209/2079-3316-2018-9-4-477-491
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