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Приводится геометрическая интерпретация движения по инерции подобно изменяемой 
сложной механической системы (СМС), неизменяемая основа которой движется вокруг не-
подвижного полюса. Получены аналоги классических интерпретационных теорем Л. Пуансо 
[1] и Дж. Сильвестра [2]. 
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1. Предварительные положения 
 
Л. Пуансо [1] была предложена геомет-

рическая интерпретация сферического движе-
ния неизменяемого абсолютно твердого тела в 
интегрируемом случае Л.Эйлера. 
Дж.Сильвестром [2] доказана аналоговая тео-
рема, интерпретирующая движение этого тела 
при условиях Эйлера–Пуансо [Sylvester. Phil. 
Trans. 1866. Works. Vol.2. P.577]. Представляет 
интерес вопрос о существовании аналогов дан-
ных истолкований для механических объектов 
более сложной структуры, в частности для 
СМС. 

Под СМС здесь понимается механиче-
ский объект, структурная модель которого в 
общем случае предполагает непрерывное во 
времени изменение конфигурации и состава 
массы объекта, задаваемое априорно постро-
енной для t[0,+∞)  T управляющей про-
граммой (программным массивом [3]). Эта 
программа определяет для tT упорядоченное 
многоуровневое иерархическое множество 
структурно-динамических параметров объек-
та (в том числе и управляющих) так, что сис-
тема его уравнений движения аналитически 
замкнута относительно компонент вектора 
мгновенной угловой скорости. При этом ог-
раничения, налагаемые на управляющие па-
раметры объекта, называются управляющими 
связями, устанавливающими определенный 
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режим состояния данного объекта. 
Таким образом, программы (или под-

программы), содержащиеся в данном массиве, 
реализуются в виде зависимостей, опреде-
ляющих характер относительного (по отно-
шению к неизменяемой основе СМС) перено-
са рабочего тела при изменении состава мас-
сы и конфигурации СМС. Согласно такому 
представлению тела переменного состава и 
конфигурационно изменяемые тела (системы) 
являются частными видами СМС [3]. 

Принимая предложенную структурную 
модель СМС [3], введем следующие обозначе-
ния. Пусть G, Gr – кинетический и гиродинами-
ческий (для рабочего тела) моменты СМС отно-
сительно неподвижного полюса O; J(t) – опера-
тор инерции СМС, отнесенный к полюсу O; ω, 
ωr – мгновенные угловые скорости: абсолютная 
для неизменяемой основы СМС и относительная 
для базиса главных в полюсе О осей инерции 
системы по отношению к ее неизменяемой осно-
ве; Ω – абсолютная угловая скорость базиса 
главных в полюсе О осей инерции СМС; λ – 
приведенная (эффективная) угловая скорость. В 
дальнейшем нулевой верхний индекс относится 
к значениям величин в начальный момент вре-
мени t = 0. 

Примем следующие предпосылки, вы-
полняющиеся для любого значения tT. 

1. Система движется так, что ее неизме-
няемая основа (абсолютно твердое тело) дви-
жется вокруг полюса О, неподвижного отно-
сительно инерциальной системы отсчета. 
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2. Результирующий вектор-момент вне-
шних сил, приложенных к СМС, включая ре-
активные силы, обусловленные изменением 
состава массы системы, тождественно равен 
нулю. 

3. Программно заданные зависимости, 
определяющие изменение состава массы СМС 
и ее конфигурации (т.е. изменение структуры 
системы), являются гладкими явно (или пара-
метрически) заданными функциями времени 
необходимой степени гладкости. 

4. Данная СМС обладает определенным 
характерным структурно-динамическим свой-
ством, заданным для tT на полном множест-
ве программных зависимостей. 

Согласно предпосылкам 1–3 движение 
СМС в системе ортогональных осей коорди-
нат, совпадающей с базисом главных в полю-
се O осей инерции системы, определяется 
уравнением Н. Жуковского [4] 

01  


GλGGJG ,               (1) 
где 

rrr ωωΩGJωλλΩJG   ,),( 1 .  
Динамическая система (1) обладает 

первым алгебраическим интегралом [5] 
)constH(H 0G              (2) 

и относится к классу систем с инвариантной 
нормой вектора кинетического момента СМС. 

Зададим величину k, и пусть k (t)C 0(T ), 
µ(t)C 1(T ) – некоторые ограниченные величи-
ны, связанные зависимостью [5] 


t

.ds)s(kexp)t(
0

                   (3) 

Из полного множества программно за-
данных зависимостей, определяющих изме-
нение структуры СМС, выделим подмножест-
во, для всех элементов которого при tT вы-
полняются следующие структурно-динами-
ческие условия [5]: 

001 )()(,)()( λλEJJ tttt   ,    (4) 

где E – единичная матрица, а величина µ оп-
ределяется равенством (3). 

Соотношения (4) выражают свойство 
структурно-динамического подобия СМС как 
объекта с изменяемыми во времени конфигу-
рацией и составом массы. Они определяют 
реономно-гомотетический закон изменения 
параметров J(t), λ(t). В силу структурного по-
добия системы согласно первому условию (4) 
эллипсоиды инерции СМС, отнесенные к по-

люсу O, в каждый момент времени tT обра-
зуют в конфигурационном пространстве го-
мотетические фигуры с центром гомотетии в 
полюсе О и реономным коэффициентом  . 
При этом параметр k (t), определяемый со-
гласно равенству (3) как 

 )Tt()t(k 


  1 ,  
такой, что его модуль является некоторым 
аналогом коэффициента скорости относи-
тельной "деформации" системы. 

В дальнейшем под подобно изменяемой 
СМС понимается механический объект, пара-
метры которого на множестве T удовлетворя-
ют соотношениям (4). В соответствии с этим 
предпосылку 4 следует отнести к подобно из-
меняемой СМС, а под упомянутым в ней ха-
рактерным структурно-динамическим свойст-
вом следует понимать свойство, определяемое 
условием (4). 

 
2. Геометрическая интерпретация 
движения подобно изменяемой 
механической системы 

 
Динамическая система (1) при условиях 

подобия (4) обладает, помимо интеграла (2), 
первым алгебраическим интегралом [5] в 
форме 
 21 )(2)( h  GλGJG , (5) 
где h = const. Условия (4) выражают критерий 
существования квазиэнергетического инте-
грала (5) [5]. 

В силу условий (4) система (1) и первый 
интеграл (5) приводимы по А.М. Ляпунову. 
Полагая 

 
t

dsstt
0

,)(,)()(  WΩ  (6) 

где W = (J0)–1G + λ0, приведем соотношения 
(1), (2), (5) к виду 
 0)( 000  λWJWWJ , (7) 

  2000 ,)( hH  WJWλWJ ,     (8) 

где H h ≠ 0. Здесь и всюду далее штрих обо-
значает дифференцирование по τ. 

Соотношение (7) является динамиче-
ским уравнением движения по инерции во-
круг неподвижного полюса O некоторого ги-
ростата. Это движение реализуется в масшта-
бе приведенного времени τ согласно равенст-
ву (6) с угловой скоростью его неизменяемой 
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основы W. При этом оператор инерции дан-
ного гиростата, отнесенный к полюсу O, есть 
J 0, а гиростатический момент Gr = – J 0λ0. Та-
кой гиростат назовем приведенным гироста-
том (ПГ), соответствующим данной подобно 
изменяемой СМС. 

Таким образом, ПГ – это механический 
объект, для которого выполняются соотноше-
ния (7), (8). Имеет место следующее свойство: 
движения неизменяемой основы подобно из-
меняемой СМС и несущего тела (термин [6, 
с.80]) ее ПГ диффеоморфны по (Ω, t)↔(W, τ) 
в классе функций C1(T) [5]. 

Приведем аналог геометрической ин-
терпретации Л.Пуансо для подобно изменяе-
мой СМС. 

Пусть апекс N – точка пересечения лу-
ча, исходящего из полюса O коллинеарно век-
тору W, с центральным эллипсоидом инерции 
Q, построенным для СМС и отнесенным к 
этому полюсу. Этот эллипсоид касается плос-
кости Пуансо П [7] (плоскости Лапласа [8]) в 
точке N. Обозначим: rN – радиус-вектор точки 
N при полюсе O, δ = |rN|, l – постоянный мас-
штабный коэффициент в уравнении эллип-
соида Q. В дальнейшем под управляющими 
связями понимаются ограничения, наложен-
ные на управляющие параметры СМС λ , Gr. 

Теорема 1. Если для СМС, подчинен-
ной динамической системе (1), имеют место 
управляющая связь 

)(0)()( Tttt rr  λJωG ,         (9) 
и первое структурное условие (4), то ее ПГ 
движется так, что плоскость Пуансо П в каж-
дый момент времени tT ортогональна векто-
ру G и перемещается поступательно в на-
правлении вектора G. При этом 

,Tt,)t()t(   0
          (10) 

где δ 0 = hH–1 с точностью до сомножителя – 
масштабного коэффициента l, а величина µ 
определяется равенством (3). 

Доказательство достигается известным 
классическим приемом [7, 9, 10] на основе со-
отношений (6), (8) с применением очевидных 
равенств 

   ., 201 llh NNN    rJrWr  (11) 

Теорема 2. Движение СМС, подчинен-
ное динамической системе (1), существующее 
при условиях (4) на управляющей связи (9), 
интерпретируется как качение без скольжения 
(и верчение) эллипсоида инерции Q по плос-
кости Пуансо П. При этом 

 ,)()( 2 Wr tHhtN   (12) 

где величина δ определяется равенством (10). 
Доказательство этого утверждения 

также достигается по типу, приведенному в 
[7, 9, 10]. Оно основано на известном класси-
ческом приеме с учетом того, что при фикси-
рованных значениях параметра δ точка N яв-
ляется мгновенным центром скоростей для 
материализованного эллипсоида Q. При этом 
"лучевая" скорость точки NQ, обусловлен-
ная структурно-подобным изменением СМС, 
коллинеарна нормали, проведенной к этому 
эллипсоиду в любой его точке. 

Соотношение (12) непосредственно сле-
дует из равенств (10), (11). 

Теоремы 1, 2 обобщают известный ре-
зультат Л. Пуансо [1] для подобно изменяе-
мых СМС. Рассмотрим некоторые следствия, 
вытекающие из этих теорем. 

Пусть 

 ,
2
11)(

2
0 





   tkt  (13) 

где k (t) – величина, входящая в соотношение 
(3) и в локальное равенство [5] 

 )D,Tt(),t(k
t



 rr

. (14) 

В равенстве (14) ρ – величина локальной 
плотности рабочего тела СМС – сплошной 
среды, совершающей циклические движения 
в области D. Показано [5], что ограничение 
(14) порождает структурное подобие СМС, 
определяемое первым равенством (4). 

Следствие 1. Из соотношений (3), (10) 

непосредственно следует 0


)t()t(k   
(tT). 

Следствие 2. Если для tT имеют место 
условия µ ≥ Φ+, k > 0 или µ ≤ Φ–, k < 0, то 

0

  (tT). При условиях µ < Φ–, k > 0 или 

при µ > Φ+, k < 0 для tT имеем 0

 . Здесь 

величины Φ+, Φ– определяются равенством 
(13). 

Представим второе ограничение (4) в 
виде 

    
   0100

)( rrrr t ωωJGG  .  (15) 

Следствие 3. На стационарной управ-
ляющей связи 

  )()(
0

Ttt rr  GG ,            (16) 
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совместимой с наложенными в теореме 1 ог-
раничениями, в силу управления (15) имеем 

  )()()(
0

Tttt rr  ωω .           (17) 
Таким образом, на связи (16) параметр 

ωr подчиняется закону структурного подобия 
(17) с реономным коэффициентом подобия µ. 

Пусть K – кинетическая энергия СМС; 
v r – относительная скорость частиц рабочего 
тела системы, занимающего область D, по от-
ношению к ее неизменяемой основе, 

      01002201
* 2, rrhcc GJG

   ,  

  
D

rr dVK
2

2
1 v ,  

Имеет место зависимость [5] 
    rrr KK   GJGGJG 1

2
11

2
1 ,     (18) 

где K r – кинетическая энергия рабочего тела 
СМС в его движении по отношению к неиз-
меняемой основе системы. 

Применяя к равенству (18) интеграл (5) 
и условие структурного подобия (4) на управ-
ляющей связи (9), приходим к следствию из 
теоремы 1. 

Следствие 4. При условиях теоремы 1 
на управляющей связи (16) имеет место зави-

симость        )(
2

*
TtKK r 











 ,        (19) 

где величина δ определяется равенством (10). 
Таким образом, согласно соотношению 

(19) величина δ  (K – K r)–1/2 при заданных 
структурно-динамических ограничениях яв-
ляется инвариантом. 

Распространим геометрическую интер-
претацию Дж. Сильвестра на подобно изменяе-
мые СМС. Для этого введем понятие тела 
сравнения (ТС) по отношению к данной СМС. 
Под ТС понимается абсолютно твердое тело с 
изменяемой структурой, являющееся "однород-
ным материальным эллипсоидом" [1, 2] P, кон-
груэнтным эллипсоиду инерции Q ("эллипсои-
дальный волчок" P – термин Л. Пуансо [10]). 

В дальнейшем предполагается: 
– центр O* эллипсоида P является по-

люсом, неподвижным относительно инерци-
ального пространства; 

– для ТС при tT выполняются условия 
(4), причём начальная скорость (ω r)0=0; 

– при движении ТС безотрывно контак-
тирует с некоторой абсолютно шероховатой 
плоскостью П*, которая для каждого значения 
tT ориентирована в инерциальном простран-

стве одинаково с плоскостью П (здесь и затем 
далее индекс * относится к параметрам и эле-
ментам ТС). 

Пусть Г, Г* – системы ортогональных 
осей координат, совпадающие с главными в 
неподвижных полюсах осями инерции СМС и 
ее ТС соответственно. Положим, что движе-
ние ТС в каждый фиксированный момент 
времени tT тождественно движению соот-
ветствующей ему СМС, если в этот момент 
времени: 

– ориентация систем осей Г, Г* одина-
кова (ГГ*); 

– абсолютные угловые скорости систем 
осей Г, Г* одинаковы (Ω  Ω*). 

Обозначим L результирующий момент 
внешних сил, действующих на ТС, относи-
тельно полюса О*. К этим силам, в частности, 
относятся квазиреактивные силы [5] и сила 
контактной реакции плоскости П*. 

Имеет место следующий аналог интер-
претационной теоремы Дж. Сильвестра. 

Теорема 3. Для того чтобы ТС, движу-
щееся по абсолютно шероховатой контактной 
плоскости, совершало для tT движение, тож-
дественное движению данной СМС, происхо-
дящему при условиях теоремы 2, необходимо 
и достаточно, чтобы выполнялись условия 
  0*0*,      при t = 0,  
 .)LW( 0                  при t ≥ 0. (20) 

Таким образом, теорема 3 утверждает, 
что если для tT выполняется условие (20) и 
при t = 0 движение ТС является тождествен-
ным в указанном смысле, то оно будет оста-
ваться таким и при t > 0. Условие (20) выра-
жает равенство нулю результирующего мо-
мента указанных сил относительно оси, про-
ходящей через полюс О* и точку касания эл-
липсоида Р с контактной плоскостью. 

Доказательство. Необходимость.  
Обозначим 

    01*000* , rGJσσWW


   
и представим уравнения движения ТС в виде 

        .1*0*0**0* LWJσWWJ 


   (21) 
Так как при t ≥ 0 в тождественном дви-

жении имеем Ω  Ω*, то, исключая из уравне-
ний (7), (21) производную функцию по τ и 
умножая полученный результат скалярно на 
W, получаем 

 
      

  .L
)(F *








W
WWJJJWW

1

0100


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Поскольку квадраты длин главных по-
луосей эллипсоида инерции Q пропорцио-
нальны соответствующим элементам матрицы 
тензора J–1 [2], то имеем F = 0. Отсюда следу-
ет условие (20). 

Достаточность. Пусть параметр Ws 
относится к ТС при условиях Ω ≠ Ω*, tT. То-
гда из уравнения (21) согласно условиям (20) 
следует 

    0
0* 


 ss WJW .                (22) 

Применяя к уравнению (7) при λ0 = 0 
последовательно операторы (J0)–1, (J*)0 и ум-
ножая результат скалярно на W, согласно ра-
венству F = 0 получаем 

  0
0*  WJW .                    (23) 

При выполнении условия (20) для t = 0 в 
силу уравнений (22), (23) имеем Ws = W. 

 
3. Расширение геометрической 
интерпретации 

 
Распространим предложенную геомет-

рическую интерпретацию движения по инер-
ции СМС на один из видов ее безынерцион-
ного движения. 

Рассмотрим движение СМС, при кото-
ром выполняются принятые ранее предпо-
сылки 1, 3, 4, а вместо предпосылки 2 примем 
следующее условие. Пусть результирующий 
вектор-момент внешних сил, действующих на 
эту систему, представляется в виде 
 )()()( Tttmt  GL , (24) 
где m(t)C 0(T ) – ограниченная, определенно 
положительная функция. Зависимость (24) ус-
танавливает коллинеарность векторов L , G и 
является распространенной в динамике сис-
тем [10, с. 111]. Здесь предполагается, что эти 
векторы для любых значений tT остаются 
векторами неизменного направления по от-
ношению к инерциальному пространству. 

Движение СМС, отнесенной к коорди-
натному ортобазису Г, под воздействием век-
тор-момента (24) определяется уравнением 

 GGλGGJG m 


1 . (25) 
Здесь сохранены обозначения, принятые для 
уравнения (1). 

К уравнению (25) применим прием, 
предложенный М.Ш.Аминовым [11] для 
твердого тела переменного состава. Положим, 

 
t

dssfttfttf
0

.)(),()()(,)( nλZG  (26) 

Здесь f (t)C 1(T ), n(t)C 0(T ), и предполагает-
ся, что f (t) ≠ 0 для tT. 

Применяя к уравнению (25) преобразо-
вание (26), приведем его к виду 
 01   ZnZZJZ . (27) 
В уравнении (27) штрих обозначает диффе-
ренцирование по τ  согласно зависимости (26). 

Уравнение (27) идентично по структуре 
уравнению Н.Жуковского (1), что и обуслов-
ливает возможность применения предложен-
ной интерпретации к движению СМС, подчи-
ненной условиям подобия. 

Действительно, принимая здесь условия 
структурно-динамического подобия в форме 
первого соотношения (4) и равенства 
 )()()( 0 Tttt  nn  ,  
на управляющей связи n0 = 0 получаем 
Z = f –1(J 0W). В силу этого при данных 
предпосылках возможно применение тео-
рем 1–3. При этом предполагается, что од-
нозначная непрерывная зависимость вида 
t = t(τ) может быть получена путем обра-
щения последнего соотношения (26). 
 

Комментарий 
 
Динамическая система (1) является сис-

темой с инвариантной нормой вектора G 
(термин применен М.Атансом и П.Фалбом 
[12]). Это понятие относится к непрерывным 
детерминированным системам типа (1) с ли-
нейно входящим управлением λ(t). Автоном-
ные динамические системы этого типа рас-
смотрены в работах [13, 14] и в ряде других 
источников. Следует ожидать, что и для по-
добно изменяемых СМС других типов, дви-
жение которых описывается также динамиче-
скими системами с инвариантной нормой, 
может быть построена геометрическая интер-
претация движения, аналогичная интерпрета-
ции Л. Пуансо и Дж. Сильвестра. 

Помимо систем с собственно инвари-
антной нормой существует подкласс динами-
ческих систем, приводимых к ним. К приво-
димым системам относится и система (25), 
для которой моментно-силовая нагрузка (24) 
удовлетворяет условию L(t)G(t) = 0 (tT). 
Это условие определяет режим автономного 
управления, при котором управляющий мо-
мент L для tT коллинеарен кинетическому 
моменту СМС. Реализация этого режима дос-
тигается функционированием САУ следящего 
типа, являющейся замкнутой системой с ре-
гулированием по отклонению. Выходной сиг-
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нал этой системы является управляющим для 
вектора L. 

Таким образом, моментно-силовая на-
грузка вида (24) может трактоваться не только 
как внешнее "формально диссипативное" воз-
действие, но и как некоторое видоизменение 
моментно-силового фактора в известной задаче 
Фабри–Граммеля для неизменяемого твердого 
тела [15]. Свойства движения СМС, находящей-
ся под воздействием нестационарного силового 
момента, коллинеарного вектору ее кинетиче-
ского момента, рассмотрены в работе [16]. 
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It is given the generalization of a geometrical interpretation for inertial motion of the complicated 
mechanical system with a similarly change structure. An invariable foundation of this system is ro-
tate around of a motionless pole. 
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