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Единственным средством получить полную ин-
формацию о магнитном поле сложных конструкций
электромагнитов (ЭМ) являются численные методы.
Наиболее эффективным в этом плане и широко при-
меняемым считается метод конечных элементов
(МКЭ). При использовании МКЭ решение дифферен-
циального уравнения Пуассона заменяется эквива-
лентной вариационной задачей, которая в свою оче-
редь сводится к системе алгебраических уравнений.

Другой важный класс физических задач представ-
ляют задачи, учитывающие изменение искомых вели-
чин (векторного магнитного потенциала) во времени.

Плотность тока в проводящей среде и электриче-
скую напряжённость в этом случае представляют
состоящими из «вихревой» и «потенциальной» со-
ставляющей. В предположении, что распределение
магнитного потенциала внутри каждого элемента
(а значит, и вихревые токи) подчиняются определен-
ной аналитической зависимости – полиному, степень
которого определяется видом конечного элемента, то
и вихревые токи могут быть выражены через потен-
циалы узлов. В этом случае система уравнений при-
мет вид:
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где [ ]K  – глобальная матрица жёсткости; { }F – век-

тор-столбец источников поля; { }A  – вектор-столбец
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матрица демпфирования, учитывающая влияние вих-
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получим для любого момента времени рекуррентную
схему Крэнка–Николсона (схему с центральной раз-
ностью) [1].

Выделив из уравнения неизменную и меняющую-
ся части на каждом итерационном шаге, обозначим
величины, соответствующие началу временного ин-

тервала, индексом « i », а концу – индексом « 1i + »,
получим
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Здесь *K    и *C    – неизменная часть, [ ]K∆  и

[ ]C∆  – часть, изменяющаяся на каждом шаге итера-
ции, i  – номер итерации.

В результате получим для любого момента време-
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На каждом временном шаге решение системы (1)
ищется до выполнения условия

{ } { } 01max i iA A+∆ − ∆ < ε ,

где 0 0ε >  – заданная точность вычислений.

Переход к следующему временному шагу осуще-
ствляется с помощью соотношений:
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Итерационный процесс заканчивается при усло-
вии [2]

{ } { } { }* * 0i i
K A F ∆ = − + =  .

Глобальная матрица жёсткости и матрица демп-
фирования могут быть представлены как суммы ло-
кальных матриц элементов:
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Считая толщину элемента единичной ( )1V S ∆= ⋅ ,
получим для матрицы жёсткости двумерного сим-
плекс-элемента
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Шихтовка магнитопроводов электромагнитов пе-
ременного тока, а также применение магнитных мате-
риалов с высокими значениями удельных электросо-
противлений значительно снижают потери мощности
на вихревые токи. Однако при проектировании таких
магнитопроводов необходимо уметь оценить влияние
толщины листа (количества листов) на величину по-
терь, на динамические интегральные характеристики
электромагнита: тяговое усилие, время трогания и
срабатывания и другие. В настоящее время такая
оценка осуществляется на основе экспериментальных
значений удельных потерь [3] либо на основе при-
ближенных расчетов глубины проникновения элек-
тромагнитной волны [4].

В современной практике используются прибли-
женные рекомендации при выборе толщины листов
[5]. В частности, при промышленной частоте 50 Гц
применяют листы толщиной 0,35 – 0,5 мм, при частоте
400 Гц – листы толщиной 0,1 – 0,35 мм, при частотах
порядка тысяч герц – листы толщиной 0,02 – 0,05 мм,
а при более высоких частотах толщина листов дохо-
дит до 0,005 мм.

Рассмотрим вопросы, касающиеся влияния тол-
щины листа на потери общей энергии, более подробно.

Исследуем вначале изменение площади треуголь-
ного элемента за счёт уменьшения его сторон в xk  раз
по оси x  и в yk  раз по оси  y, соответственно полу-
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Положим, что стороны треугольных элементов
изменяются пропорционально в k  раз по оси x  и так
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Из (2) видно, что уменьшение площади треуголь-

ных элементов не изменяет первую составляющую
исследуемой матрицы, отвечающую за нелинейность,
и в 2k  раз уменьшает вторую составляющую для
одного элемента.

Теперь исследуем влияние толщины пластины по
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Промоделируем данный процесс на примере кон-
кретного элемента, являющегося частью электромаг-
нита переменного тока в системе MathCad, характери-
стика материала элемента показаны на рис. 1.

Представим полную энергию электромагнита как

Э мех ( )АW W W Wh Wv Wm− = + + + ,

где ЭW  – электрическая энергия, подводимая к об-
мотке; АW  – энергия потерь в омическом сопротив-
лении обмотки (для нашего случая положим 0АW = );

мехW  – механическая энергия элемента, определяемая

как 
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П
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µ

 ( ЭМF  – электромагнит-

ная сила, ∆  – рабочий зазор, Bδ  – средняя индукция
в зазоре, ПS  – площадь полюса электромагнита); Wm
– запасённая магнитная энергия в объёме V  элемента
( ) ЭW h W=  ( срB  – среднее значение индукции по

элементу, ср
ср
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 – среднее значение напряжён-

ности магнитного поля, V S h∆=  – объём элемента);
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токов для постоянного объёма элемента
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=  [6], 1T
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период, γ  – значение электрической проводимости

стали, f  – частота сети); 1HdB
Wh f m T

h
 

=   ρ 
∫  –

потери от перемагничивания для постоянного объёма
элемента (ρ = 7800 кг/м3 – плотность материала,
m V= ρ  – масса элемента, интеграл HdB∫  вычислял-
ся по реальной кривой – сталь армко).

На рис. 1а, б, в представлены полученные в ходе
моделирования зависимость полных потерь в стали

( )( ) ( ) ( )pW h Wv h Wh h= +  от толщины листа h  при
фиксированных частотах f = {50 Гц, 400 Гц, 1000 Гц},

ЭW  – полная энергия сети и, соответственно 10 и 5 %
от неё. Здесь и далее потери энергии считались для
постоянного объёма (изменялась только величина h  –
толщина листа магнитопровода).
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Рис. 1. Зависимость полных потерь в стали от толщины
листа при а – f = 50 Гц; б – f = 400 Гц;; в – f = 1000 Гц

Для анализа полученных результатов и сравнения
их с общепринятыми были рассчитаны значения
мощности удельных потерь [Вт/кг] от вихревых токов
и гистерезиса по формулам:
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и 
HdB

Ph f=
ρ

∫  соответственно (рис. 2), а также оце-

нена доля потерь, приходящаяся на каждый вид
потерь по сравнению с общими потерями в стали
(рис. 3)

100 %,

100 %.

Pvv
Pv Ph

Phh
Pv Ph

ρ =
+

ρ =
+

На рис. 4а, б, в представлены зависимости мощ-
ности потерь от вихревых токов ( )Pv f , от гистере-
зиса ( )Ph f  и суммарные потери в стали в зависимо-
сти от частоты сети f  при фиксированных толщинах
листа (соответственно 0,5 ммh = , 0,35 ммh =  и

0,05 ммh = ).
Рис. 5 содержит информацию о зависимостях до-

лей удельных потерь от вихревых токов и гистерезиса
в процентном отношении от общих потерь от частоты
сети f  при разной толщине листа ( 0,5 ммh =  и

0,35 ммh =  соответственно).
В работе [7] были проведены исследования, на

основании которых сделаны выводы о том, что в оп-
тимальных конструкциях электромагнитов потери в
стали не превышают 10–20 % от общей энергии сети.
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Рис. 2. Зависимости удельных потерь на вихревые токи и гистерезис
от толщины листа при f = {50, 400, 1000} Гц
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Рис. 3. Зависимость долей удельных потерь от вихревых токов и гистерезиса в процентном отношении (от общих потерь)
от толщины листа h  при разной частоте сети f = {50, 400, 1000} Гц
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Рис. 4. Зависимость потерь на вихревые токи, гистерезис
и полных потерь от частоты сети при а – h = 0,5 мм;

б – h = 0,35 мм; в – h = 0,05 мм

Основываясь на этом и анализируя зависимости,
отображенные на рис. 2, можно говорить о возможности

обеспечения меньших потерь (5–10 %) при правиль-
ном выборе толщин листов, что в свою очередь не
противоречит общепринятым рекомендациям [5].

h = 0,5 мм0,35

   0                100            200             300            400         f, Гц

Рис. 5. Зависимость долей удельных потерь от вихревых
токов и гистерезиса в процентном отношении от общих

потерь от частоты сети при разной толщине листа
(0,5 и h = 0,35 мм)

Казалось бы, уменьшение толщины листа должно
резко сокращать потери в стали, однако применение
тонких сталей при сравнительно низких частотах (до
1000 Гц) ведёт к увеличению потерь от гистерезиса
(рис. 3 и 5) и, кроме того, нецелесообразно с эконо-
мической точки зрения. Эти выводы совпадают с экс-
периментальными данными, приведёнными в [8].

Таким образом, в ходе моделирования были полу-
чены результаты, позволяющие теоретически обосно-
вать полученные эмпирическим путём оптимальные
толщины стальных листов в зависимости от различ-
ных частот сети.
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