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АРХИТЕКТУРА EDA-СИСТЕМЫ  
НА ОСНОВЕ КОНКУРИРУЮЩИХ ПАРАЛЛЕЛЬНЫХ ПРОЦЕССОВ  

Предлагается архитектура EDA-системы, в которой отсутствует единая матема-
тическая модель анализируемого устройства и вместо этой модели реализуется 
совокупность элементарных моделей, при этом для каждой из них выделен от-
дельный вычислительный процесс. Вычислительные процессы выполняются в 
распределенной виртуальной вычислительной машине, и обмен асинхронными 
сообщениями между процессами осуществляется по маршрутам, определяемым 
топологией исходной системы. Данный подход позволяет избежать влияния не-
линейностей на точность моделирования.  

Ключевые слова: системы автоматизированного проектирования, EDA-
системы, архитектура программного обеспечения. 

Моделирование и анализ работы электронного оборудования — весьма сложная задача, 
для решения которой активно используется специализированное программное обеспече-
ние — EDA-системы. Развитие таких систем осуществляется в основном экстенсивным пу-
тем. Как правило, улучшаются пользовательские интерфейсы, расширяются базы данных 
электронных компонентов и т.п., в то время как основные вычислительные алгоритмы оста-
ются прежними. Существующие методы анализа, используемые в EDA-системах, сводятся к 
решению результирующей системы линеаризованных дифференциальных уравнений, яв-
ляющейся математической моделью моделируемого устройства. Численные методы решения 
при этом позволяют получать весьма точные результаты, но проблемы возникают при моде-
лировании систем с большим количеством электронных компонентов, что приводит к услож-
нению математической модели, а также при моделировании систем, имеющих существенные 
нелинейности, которые значительно огрубляют результаты моделирования либо вообще при-
водят к расхождению вычислительного процесса [1—3]. 

В связи с этим предлагается диаметрально противоположный подход: каждый блок ли-
бо компонент устройства должен быть смоделирован отдельно. Реализация полученных мо-
делей должна осуществляться с использованием отдельных вычислительных процессов. При 
этом если моделирование выполняется в некотором диапазоне времени, то на один или не-
сколько логических входов каждого из таких вычислительных процессов должны поступать 
некоторые параметры (например, мгновенное значение напряжения относительно общей ши-
ны питания). Эти процессы также должны выдавать в качестве выходных данных результаты 
обработки входных параметров. 
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Основные проблемы, связанные с такой схемой работы, заключаются в том, что необ-
ходимо обеспечить высокую степень взаимной изолированности вычислительных процессов, 
сохраняя возможность синхронизированного обмена данными. Можно провести аналогию с 
современными вычислительными сетями, где каждый компьютер максимально „самостояте-
лен“, но имеет возможность обмена данными, разбитыми на пакеты, с любым другим компь-
ютером сети в произвольный момент времени. Существенным отличием предлагаемого под-
хода является то, что при каждом процессе прием и передача информации должны осуществ-
ляться строго по синхронизирующему сигналу. В случае если это требование не выполняется 
по каким-либо причинам, возможны два подхода: ожидание либо уничтожение результатов 
процесса. В первом случае ни один набор данных, поступивших при выполнении других про-
цессов, не будет принят и не будет передан, пока не будут получены результаты всех процес-
сов модели. Во втором случае процессы, данные которых не получены по истечении установ-
ленного времени, будут уничтожены либо перезапущены, а недостающие значения будут за-
менены на нулевые либо заранее заданные. Возможна и гибридная стратегия, когда результа-
ты процесса уничтожаются после некоторого ожидания. 

Реализация асинхронного обмена сообщениями (как, например, в вычислительных се-
тях на основе технологии Ethernet) может повлечь за собой серьезную проблему: результаты 
моделирования будут зависеть от производительности системы, и без предварительного про-
филирования реализовать модель не получится.  

Как при асинхронном, так и при синхронном обмене данными необходим отдельный 
процесс-маршрутизатор. В его функции входит сбор данных, полученных при выполнении 
остальных процессов, уничтожение результатов процессов, данные которых не были получе-
ны в течение отведенного интервала времени, рассылка данных по процессам в соответствии 

с таблицей взаимосвязей. Наглядно по-
токи данных представлены на DFD-
диаграмме в нотации Гейна — Сарсона 
[4] на рис. 1. 

Техническая реализация в этом слу-
чае требует наличия среды, обеспечиваю-
щей одновременное (параллельное) вы-
полнение большого количества несложных 
вычислительных процессов, которые реа-
лизуют атомарные блоки системы, и под-
держивающей обмен сообщениями между 
этими несложными процессами.  

Наиболее подходящей для реали-
зации средой представляется Erlang 

(Эрла́нг) — функциональный язык программирования (разработан и поддерживается компа-
нией “Ericsson”), позволяющий разрабатывать программное обеспечение для разного рода 
распределенных систем. Язык Erlang включает в себя средства, определяющие порождение 
параллельных процессов и их коммуникацию с помощью посылки асинхронных сообщений. 
Программа транслируется в байт-код, исполняемый виртуальной машиной, что обеспечивает 
возможность ее выполнения в различных операционных системах. Функциональная парадиг-
ма языка Erlang позволяет избежать таких традиционных для императивных языков проблем 
распределенных приложений, как необходимость синхронизации, опасность возникновения 
тупиков и гонок [5].  

Запущенный экземпляр эмулятора Erlang называется узлом. Узел имеет уникальный 
идентификатор и содержит информацию о существовании других узлов на данной машине 
или в сети. Создание и взаимодействие процессов в разных узлах не отличается от взаимо-
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действия процессов внутри узла. Для создания дочернего процесса необходимо знать лишь 
его идентификатор (имя). При этом нет необходимости в указании конкретного физического 
узла, на котором этот процесс будет выполняться. Этим обусловливается высокая масштаби-
руемость и способность почти линейного повышения производительности системы (класте-
ра) с ростом ее мощности [6]. 

Между процессами, моделирующими каждый отдельный элемент схемы, может быть 
осуществлен обмен сообщениями (кортежами) вида: 

{<имя корневого процесса>, <номер элемента>, <номер вывода>,  
<тип сигнала1>, <величина сигнала 1>…, <тип сигнала n>,  
<величина сигнала n>}.  

Простейший процесс, моделирующий элемент схемы, на языке Erlang описывается сле-
дующим образом (Server_Node — заранее определенное имя сервера, modeling — имя испол-
няемой программы): 

element(Server_Node) -> 
 receive  
stop ->  
 exit(normal); 
  {pin_number, signal1_type, signal1} -> 
% обработка входных значений %, 
{modeling, Server_Node}!{self(), element_number, pin_number, sig-

nal1_type, signal1 } 
end. 

Шаблон маршрутизатора описывается следующим образом (Element_List — список всех 
элементов): 

server(Element_List) -> 
 receive  
  {element_number, pin_number, signal1_type, signal1} -> 
   % описание таблицы маршрутизации % 
   element_number ! {pin_number, signal1_type, signal1 } 
end.  

Количество рассылаемых сообщений будет зависеть исключительно от топологии мо-
делируемой системы, в примере показан простой вариант без множественных соединений 
типа „один выход — много входов“.  

Для функционирования системы необходимо иметь несколько различных типов эле-
ментов (процессов). 

1) Обычный процесс (передаточная функция, пример реализации приведен выше) — 
обеспечивает преобразование входного потока данных в выходной; в каждый момент син-
хронизации осуществляется прием и передача одного набора (кортежа) данных. 

2) Маршрутизатор — обеспечивает перераспределение сигналов по нескольким выход-
ным каналам в зависимости от соотношения количества входов и выходов (маршрутизатор, 
по сути, является совокупностью всех узлов); простейший пример симметричного (распреде-
ляющего входные сигналы равномерно) маршрутизатора размерности „2 на 3“ имеет сле-
дующий вид: 

commutator(Server_Node) -> 
receive  
stop ->  

exit(normal); 
{pin1, signal1_type, signal1},{pin2, signal2_type, signal2} -> 

signal1_type -> signal1_type, signal2_type, signal1_type 
(signal1+signal2)/3-> signal1, signal2, signal3 

{modeling, Server_Node}!{self(), output1, 1, signal1_type,  
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signal1},{self(), output2, 2, signal2_type, signal2},{self(),  
output3, 3, signal3_type, signal3 } 
end. 

3) Источник — обеспечивает выдачу сигналов, входов не имеет; простейший пример 
источника с одним выходом: 

commutator(Server_Node) -> 
receive  
stop ->  

exit(normal); 
{ } -> 

{modeling, Server_Node}!{self(), output1, 1, type1, 100} 
end. 

4) Выход — псевдоблок, необходимый для получения текущих значений параметров 
для анализа процесса, является адаптером между моделью и пользовательским интерфейсом; 
имеет один вход, выходов нет. 

Одна из важнейших процедур при создании подобной модели — построение таблицы 
маршрутизации по пользовательской модели (к примеру, по принципиальной электрической 
схеме). На основе этой информации также должны быть созданы процессы-коммутаторы. 

После запуска системы все ее элементы осуществляют передачу сообщений маршрути-
зирующему процессу — серверу, который выполняет их распределение в соответствии с за-
данной топологией моделируемой системы. 

В целом, программный продукт, построенный на основе данной схемы, состоит из сле-
дующих компонентов:  

— ядро системы — виртуальная машина Erlang, основные функции — моделирование; 
— библиотека компонентов — хранилище процедур на декларативном языке Erlang; 
— схема построения модели — приложение на императивном языке высокого уровня 

(например, C#), формирующее в автоматическом режиме матрицу взаимосвязей для маршру-
тизатора и исходный Erlang-код всех процессов модели;  

— графический интерфейс — приложение на императивном языке высокого уровня, 
обеспечивающее ввод и вывод информации для пользователя. 

Упрощенная UML-диаграмма работы (activity) приложения [4], построенного на основе 
данной архитектуры, приведена на рис. 2. 

От источника сигнала

Входной сигнал получен 

Выходной сигнал сформирован

Разрешена отправка выходного сигнала 

От процессов 
Синхронизация

Сигнал в точке наблюдения получен

 
Рис. 2 

Реализация системы, основанной на описанной архитектуре, позволяет повысить точ-
ность и скорость моделирования систем с существенными нелинейностями, а также прово-
дить моделирование в течение длительных интервалов времени без риска потерь данных. 
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НЕПАРАМЕТРИЧЕСКИЕ АЛГОРИТМЫ РАСПОЗНАВАНИЯ ОБРАЗОВ  
В ЗАДАЧЕ ПРОВЕРКИ ГИПОТЕЗЫ  

О РАСПРЕДЕЛЕНИЯХ СЛУЧАЙНЫХ ВЕЛИЧИН  

Предлагается методика проверки гипотез о тождественности законов распреде-
ления случайных величин, основанная на использовании непараметрических 
алгоритмов распознавания образов и принципов коллективного оценивания. 
Приводятся результаты сравнения методики с критерием Колмогорова — 
Смирнова.  

Ключевые слова: непараметрическая статистика, распознавание образов, 
проверка гипотез, распределения случайных величин. 

Проверка гипотез о распределениях случайных величин является одной ключевых задач 
математической статистики и имеет важное прикладное значение, например, при сравнении 
эффективности приборов и систем контроля с данными их испытаний. Для проверки гипотез 
о распределениях случайных величин широко используется критерий согласия Пирсона,  
который не зависит от распределений случайных величин и их размерности [1]. Однако ме-
тодика формирования критерия Пирсона содержит трудноформализуемый этап разбиения 
области возможных значений случайной величины на многомерные интервалы. Данный этап 
не отражен в критерии Колмогорова — Смирнова, который позволяет проверять гипотезы о 
распределениях одномерных случайных величин [2]. 

В работе [3] показана возможность использования непараметрических алгоритмов 
распознавания образов, соответствующих критерию максимального правдоподобия,  
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