

ИЗВ. ВУЗОВ. ПРИБОРОСТРОЕНИЕ. 2011. Т. 54, № 4

МАТЕМАТИЧЕСКИЕ МЕТОДЫ ОЦЕНКИ
РЕЗУЛЬТАТОВ ОТРАБОТКИ ЭЛЕМЕНТОВ

КОСМИЧЕСКИХ АППАРАТОВ

УДК 519.688

К. В. БОГДАНОВ, А. Н. ЛОВЧИКОВ

АРХИТЕКТУРА EDA-СИСТЕМЫ
НА ОСНОВЕ КОНКУРИРУЮЩИХ ПАРАЛЛЕЛЬНЫХ ПРОЦЕССОВ

Предлагается архитектура EDA-системы, в которой отсутствует единая матема-
тическая модель анализируемого устройства и вместо этой модели реализуется
совокупность элементарных моделей, при этом для каждой из них выделен от-
дельный вычислительный процесс. Вычислительные процессы выполняются в
распределенной виртуальной вычислительной машине, и обмен асинхронными
сообщениями между процессами осуществляется по маршрутам, определяемым
топологией исходной системы. Данный подход позволяет избежать влияния не-
линейностей на точность моделирования.

Ключевые слова: системы автоматизированного проектирования, EDA-
системы, архитектура программного обеспечения.

Моделирование и анализ работы электронного оборудования — весьма сложная задача,
для решения которой активно используется специализированное программное обеспече-
ние — EDA-системы. Развитие таких систем осуществляется в основном экстенсивным пу-
тем. Как правило, улучшаются пользовательские интерфейсы, расширяются базы данных
электронных компонентов и т.п., в то время как основные вычислительные алгоритмы оста-
ются прежними. Существующие методы анализа, используемые в EDA-системах, сводятся к
решению результирующей системы линеаризованных дифференциальных уравнений, яв-
ляющейся математической моделью моделируемого устройства. Численные методы решения
при этом позволяют получать весьма точные результаты, но проблемы возникают при моде-
лировании систем с большим количеством электронных компонентов, что приводит к услож-
нению математической модели, а также при моделировании систем, имеющих существенные
нелинейности, которые значительно огрубляют результаты моделирования либо вообще при-
водят к расхождению вычислительного процесса [1—3].

В связи с этим предлагается диаметрально противоположный подход: каждый блок ли-
бо компонент устройства должен быть смоделирован отдельно. Реализация полученных мо-
делей должна осуществляться с использованием отдельных вычислительных процессов. При
этом если моделирование выполняется в некотором диапазоне времени, то на один или не-
сколько логических входов каждого из таких вычислительных процессов должны поступать
некоторые параметры (например, мгновенное значение напряжения относительно общей ши-
ны питания). Эти процессы также должны выдавать в качестве выходных данных результаты
обработки входных параметров.

64 К. В. Богданов, А. Н. Ловчиков

ИЗВ. ВУЗОВ. ПРИБОРОСТРОЕНИЕ. 2011. Т. 54, № 4

Основные проблемы, связанные с такой схемой работы, заключаются в том, что необ-
ходимо обеспечить высокую степень взаимной изолированности вычислительных процессов,
сохраняя возможность синхронизированного обмена данными. Можно провести аналогию с
современными вычислительными сетями, где каждый компьютер максимально „самостояте-
лен“, но имеет возможность обмена данными, разбитыми на пакеты, с любым другим компь-
ютером сети в произвольный момент времени. Существенным отличием предлагаемого под-
хода является то, что при каждом процессе прием и передача информации должны осуществ-
ляться строго по синхронизирующему сигналу. В случае если это требование не выполняется
по каким-либо причинам, возможны два подхода: ожидание либо уничтожение результатов
процесса. В первом случае ни один набор данных, поступивших при выполнении других про-
цессов, не будет принят и не будет передан, пока не будут получены результаты всех процес-
сов модели. Во втором случае процессы, данные которых не получены по истечении установ-
ленного времени, будут уничтожены либо перезапущены, а недостающие значения будут за-
менены на нулевые либо заранее заданные. Возможна и гибридная стратегия, когда результа-
ты процесса уничтожаются после некоторого ожидания.

Реализация асинхронного обмена сообщениями (как, например, в вычислительных се-
тях на основе технологии Ethernet) может повлечь за собой серьезную проблему: результаты
моделирования будут зависеть от производительности системы, и без предварительного про-
филирования реализовать модель не получится.

Как при асинхронном, так и при синхронном обмене данными необходим отдельный
процесс-маршрутизатор. В его функции входит сбор данных, полученных при выполнении
остальных процессов, уничтожение результатов процессов, данные которых не были получе-
ны в течение отведенного интервала времени, рассылка данных по процессам в соответствии

с таблицей взаимосвязей. Наглядно по-
токи данных представлены на DFD-
диаграмме в нотации Гейна — Сарсона
[4] на рис. 1.

Техническая реализация в этом слу-
чае требует наличия среды, обеспечиваю-
щей одновременное (параллельное) вы-
полнение большого количества несложных
вычислительных процессов, которые реа-
лизуют атомарные блоки системы, и под-
держивающей обмен сообщениями между
этими несложными процессами.

Наиболее подходящей для реали-
зации средой представляется Erlang

(Эрла́нг) — функциональный язык программирования (разработан и поддерживается компа-
нией “Ericsson”), позволяющий разрабатывать программное обеспечение для разного рода
распределенных систем. Язык Erlang включает в себя средства, определяющие порождение
параллельных процессов и их коммуникацию с помощью посылки асинхронных сообщений.
Программа транслируется в байт-код, исполняемый виртуальной машиной, что обеспечивает
возможность ее выполнения в различных операционных системах. Функциональная парадиг-
ма языка Erlang позволяет избежать таких традиционных для императивных языков проблем
распределенных приложений, как необходимость синхронизации, опасность возникновения
тупиков и гонок [5].

Запущенный экземпляр эмулятора Erlang называется узлом. Узел имеет уникальный
идентификатор и содержит информацию о существовании других узлов на данной машине
или в сети. Создание и взаимодействие процессов в разных узлах не отличается от взаимо-

Процессы
для элементов

модели

Маршрутизатор

Стек
сообщений

Информация
о модели

Пользовательский
интерфейс

Результаты
моделирования

Библиотека
компонентов

Рис. 1

 Архитектура EDA-системы на основе конкурирующих параллельных процессов 65

ИЗВ. ВУЗОВ. ПРИБОРОСТРОЕНИЕ. 2011. Т. 54, № 4

действия процессов внутри узла. Для создания дочернего процесса необходимо знать лишь
его идентификатор (имя). При этом нет необходимости в указании конкретного физического
узла, на котором этот процесс будет выполняться. Этим обусловливается высокая масштаби-
руемость и способность почти линейного повышения производительности системы (класте-
ра) с ростом ее мощности [6].

Между процессами, моделирующими каждый отдельный элемент схемы, может быть
осуществлен обмен сообщениями (кортежами) вида:

{<имя корневого процесса>, <номер элемента>, <номер вывода>,
<тип сигнала1>, <величина сигнала 1>…, <тип сигнала n>,
<величина сигнала n>}.

Простейший процесс, моделирующий элемент схемы, на языке Erlang описывается сле-
дующим образом (Server_Node — заранее определенное имя сервера, modeling — имя испол-
няемой программы):

element(Server_Node) ->
 receive
stop ->
 exit(normal);
 {pin_number, signal1_type, signal1} ->
% обработка входных значений %,
{modeling, Server_Node}!{self(), element_number, pin_number, sig-

nal1_type, signal1 }
end.

Шаблон маршрутизатора описывается следующим образом (Element_List — список всех
элементов):

server(Element_List) ->
 receive
 {element_number, pin_number, signal1_type, signal1} ->
 % описание таблицы маршрутизации %
 element_number ! {pin_number, signal1_type, signal1 }
end.

Количество рассылаемых сообщений будет зависеть исключительно от топологии мо-
делируемой системы, в примере показан простой вариант без множественных соединений
типа „один выход — много входов“.

Для функционирования системы необходимо иметь несколько различных типов эле-
ментов (процессов).

1) Обычный процесс (передаточная функция, пример реализации приведен выше) —
обеспечивает преобразование входного потока данных в выходной; в каждый момент син-
хронизации осуществляется прием и передача одного набора (кортежа) данных.

2) Маршрутизатор — обеспечивает перераспределение сигналов по нескольким выход-
ным каналам в зависимости от соотношения количества входов и выходов (маршрутизатор,
по сути, является совокупностью всех узлов); простейший пример симметричного (распреде-
ляющего входные сигналы равномерно) маршрутизатора размерности „2 на 3“ имеет сле-
дующий вид:

commutator(Server_Node) ->
receive
stop ->

exit(normal);
{pin1, signal1_type, signal1},{pin2, signal2_type, signal2} ->

signal1_type -> signal1_type, signal2_type, signal1_type
(signal1+signal2)/3-> signal1, signal2, signal3

{modeling, Server_Node}!{self(), output1, 1, signal1_type,

66 К. В. Богданов, А. Н. Ловчиков

ИЗВ. ВУЗОВ. ПРИБОРОСТРОЕНИЕ. 2011. Т. 54, № 4

signal1},{self(), output2, 2, signal2_type, signal2},{self(),
output3, 3, signal3_type, signal3 }
end.

3) Источник — обеспечивает выдачу сигналов, входов не имеет; простейший пример
источника с одним выходом:

commutator(Server_Node) ->
receive
stop ->

exit(normal);
{ } ->

{modeling, Server_Node}!{self(), output1, 1, type1, 100}
end.

4) Выход — псевдоблок, необходимый для получения текущих значений параметров
для анализа процесса, является адаптером между моделью и пользовательским интерфейсом;
имеет один вход, выходов нет.

Одна из важнейших процедур при создании подобной модели — построение таблицы
маршрутизации по пользовательской модели (к примеру, по принципиальной электрической
схеме). На основе этой информации также должны быть созданы процессы-коммутаторы.

После запуска системы все ее элементы осуществляют передачу сообщений маршрути-
зирующему процессу — серверу, который выполняет их распределение в соответствии с за-
данной топологией моделируемой системы.

В целом, программный продукт, построенный на основе данной схемы, состоит из сле-
дующих компонентов:

— ядро системы — виртуальная машина Erlang, основные функции — моделирование;
— библиотека компонентов — хранилище процедур на декларативном языке Erlang;
— схема построения модели — приложение на императивном языке высокого уровня

(например, C#), формирующее в автоматическом режиме матрицу взаимосвязей для маршру-
тизатора и исходный Erlang-код всех процессов модели;

— графический интерфейс — приложение на императивном языке высокого уровня,
обеспечивающее ввод и вывод информации для пользователя.

Упрощенная UML-диаграмма работы (activity) приложения [4], построенного на основе
данной архитектуры, приведена на рис. 2.

От источника сигнала

Входной сигнал получен

Выходной сигнал сформирован

Разрешена отправка выходного сигнала

От процессов
Синхронизация

Сигнал в точке наблюдения получен

Рис. 2

Реализация системы, основанной на описанной архитектуре, позволяет повысить точ-
ность и скорость моделирования систем с существенными нелинейностями, а также прово-
дить моделирование в течение длительных интервалов времени без риска потерь данных.

 Непараметрические алгоритмы распознавания образов 67

ИЗВ. ВУЗОВ. ПРИБОРОСТРОЕНИЕ. 2011. Т. 54, № 4

СПИСОК ЛИТЕРАТУРЫ
1. Хайнеман Р. PSpice. Моделирование работы электронных схем: Пер. с нем. М.: DMK Пресс, 2001. 336 с.

2. Норенков И. П. Основы автоматизированного проектирования. М.: Изд-во МГТУ им. Н. Э. Баумана, 2002.
336 с.

3. Численные методы, параллельные вычисления и информационные технологии: Сб. науч. трудов / Под ред.
Вл. В. Воеводина и Е. Е. Тыртышникова. М.: Изд-во МГУ им. М. В. Ломоносова, 2008. 320 с.

4. Киммел П. UML. Основы визуального анализа и проектирования: Пер. с англ. М.: НТ Пресс, 2008. 272 с.

5. Open Source Erlang [Электронный ресурс, англ.]: <http://www.erlang.org/>.

6. Armstrong J. Programming Erlang: Software for a Concurrent World. Lewisville, USA: Pragmatic Bookshelf (The
Pragmatic Programmers, LLC), 2007. 440 с.

Сведения об авторах
Константин Валериевич Богданов — канд. техн. наук, доцент; Сибирский государственный аэрокосмиче-

ский университет им. акад. М. Ф. Решетнёва, кафедра информатики и
вычислительной техники, Красноярск; E-mail: darkstone@rambler.ru

Анатолий Николаевич Ловчиков — д-р техн. наук, профессор; Сибирский государственный аэрокосми-
ческий университет им. акад. М. Ф. Решетнёва, кафедра информати-
ки и вычислительной техники, Красноярск; E-mail: lanlov8@mail.ru

Рекомендована СибГАУ Поступила в редакцию

19.11.10 г.

УДК 681.513

А. В. ЛАПКО, В. А. ЛАПКО

НЕПАРАМЕТРИЧЕСКИЕ АЛГОРИТМЫ РАСПОЗНАВАНИЯ ОБРАЗОВ
В ЗАДАЧЕ ПРОВЕРКИ ГИПОТЕЗЫ

О РАСПРЕДЕЛЕНИЯХ СЛУЧАЙНЫХ ВЕЛИЧИН

Предлагается методика проверки гипотез о тождественности законов распреде-
ления случайных величин, основанная на использовании непараметрических
алгоритмов распознавания образов и принципов коллективного оценивания.
Приводятся результаты сравнения методики с критерием Колмогорова —
Смирнова.

Ключевые слова: непараметрическая статистика, распознавание образов,
проверка гипотез, распределения случайных величин.

Проверка гипотез о распределениях случайных величин является одной ключевых задач
математической статистики и имеет важное прикладное значение, например, при сравнении
эффективности приборов и систем контроля с данными их испытаний. Для проверки гипотез
о распределениях случайных величин широко используется критерий согласия Пирсона,
который не зависит от распределений случайных величин и их размерности [1]. Однако ме-
тодика формирования критерия Пирсона содержит трудноформализуемый этап разбиения
области возможных значений случайной величины на многомерные интервалы. Данный этап
не отражен в критерии Колмогорова — Смирнова, который позволяет проверять гипотезы о
распределениях одномерных случайных величин [2].

В работе [3] показана возможность использования непараметрических алгоритмов
распознавания образов, соответствующих критерию максимального правдоподобия,

	OGL_4_2011.pdf
	PRED_4_2011.pdf
	R1_4_2011.pdf
	R2_4_2011.pdf
	R3_4_2011.pdf
	R4_4_2011.pdf
	SUMMARY_4_2011 YK.pdf

