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Аннотация. 
Актуальность и цели. В многочисленных областях знаний, где применимы 

математические методы, например в медицине, физике, астрономии и геофи-
зике, применяются обратные задачи. Также стоит упомянуть задачи выяснения 
внутренней структуры всевозможных объектов с помощью их зондирования, 
где численные методы – порой единственный способ изучить объект изнутри 
и получить его внутреннюю структуру. Такое широкое применение обуслов-
лено возможностью описания различных важных свойств исследуемых объек-
тов и сред, таких как скорость распространения волны, плотность, диэлектри-
ческая и магнитная проницаемость, параметры упругости, проводимость,  
а также местоположение и свойства неоднородностей в области недоступно-
сти. Сложно недооценить важность и актуальность исследований в таких об-
ластях, где проникновение внутрь или опасно, или слишком трудоемко, или 
вообще невозможно.  

Материалы и методы. Используя полученные значения измерения поля во 
внешних точках (точках наблюдения), решается линейное интегральное урав-
нение первого рода и производится вычисление неоднородности по явной 
формуле. Интегральное уравнение решаем с помощью метода коллокации. 

Результаты. Исследована обратная задача восстановления диэлектриче-
ской проницаемости неоднородного тела в свободном пространстве. Для ре-
шения исследуемой задачи используется смоделированное дифракционное по-
ле во внешних точках, которое также можно получить экспериментальным пу-
тем. Далее исследуется восстановление внутренней структуры тела.  

Выводы. Решение поставленной задачи методом, который используется  
в работе, позволяет найти решение с необходимой точностью и при этом рабо-
тать с расчетными сетками больших размеров. Одним из главных достоинств 
метода является возможность выявления неоднородностей тела, где их коли-
чество более 1000. 

Ключевые слова: задача дифракции, обратная задача, неоднородность тела. 
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Abstract. 
Background. Inverse problems are applied in many areas of knowledge electro-

dinamic, for example, in medicine, physics, astronomy and geophysics, and they 
they apply for identification structure of the different bodies. This is due to the fart 
that the solutions of inverse problems describe various important properties of the 
media under study, such as the wave propagation velocity, density, dielectric and 
magnetic permeability, elasticity parameters, conductivity, and the location and 
properties of inhomogeneities in the region of inaccessibility. Such information is 
very important for researchers in areas where penetration is either dangerous or even 
impossible. 

Materials and methods. Using the obtained values of the field measurement at 
external points (observation points), a linear integral equation of the first kind is 
solved and the inhomogeneity is calculated from the explicit formula. The integral 
equation is solved by the collocation method. 

Results. The inverse problem of reconstructing the dielectric constant of an in-
homogeneous body in free space is investigated. A diffraction field is obtained at 
observation points, which is necessary for the further solution of the problem under 
study, which can also be obtained experimentally. Further we arrive at the determi-
nation of inhomogeneities inside the body. 

Conclusions. When using this method, the choice of the initial approximation is 
not required. Besides, this method allows you to work with large computed grids 
and identify more than 1000 heterogeneities. The proposed method also allows one 
to reconstruct the dielectric constant of an anisotropic body and a body with com-
plex dielectric permittivity. 

Keywords: diffraction problem, inverse problem, body’s inhomogeneity. 

Введение 

В современном мире существует множество задач электродинамики, 
решение которых актуально во многих областях науки. Одной из таких задач 
является задача поиска неоднородности внутри тела. Данная задача является 
обратной и встречается во многих важнейших областях, например: в дефек-
тоскопии, в задачах идентификации объектов и при диагностике рака молоч-
ной железы. Большинство из существующих методов диагностики являются 
дорогими и небезопасными. Одним из перспективных направлений в диагно-
стике рака молочной железы является метод сверхвысокочастотной-
томографии [1]. Данное направление требует развития эффективных числен-
ных методов, алгоритмов. Мы предлагаем неинвазивный метод, который поз-
воляет определять на неоднородность внутри тела, не требуя точного началь-
ного приближения.  

Данный метод может быть применен в других областях науки и техни-
ки, например, для идентификации взрывчатых и наркотических веществ, в 
дефектоскопии и т.д. [2–5]. Задача решается в два этапа. На первом этапе по-
лучаем значения поля во внешних точках (точках наблюдения). Используя 
полученные значения, решаем линейное интегральное уравнение первого ро-
да и производим вычисление неоднородности по явной формуле. Такое раз-
деление позволяет избавиться от нелинейности исходной задачи и необходи-
мости выбора начальных приближений. Метод позволяет определить геомет-
рию фигуры. В работе рассматривается метод, который позволяет решать за-
дачу на больших расчетных сетках.  
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1. Постановка задачи 

Перейдем к изучению задачи дифракции электромагнитного поля на 

теле Q . Будем предполагать, что рассматриваемое тело 3Q R∈  расположено 

в свободном пространстве с кусочно-гладкой границей Q∂  (рис. 1), а его ди-

электрическая проницаемость описывается функцией ( )xε . За приделами те-

ла диэлектрическая проницаемость является константой ( ) 0xε = ε , где 0ε  – 

диэлектрическая проницаемость свободного пространства. Источник поля 
0 3 /EJ R Q∈  расположен вне Q . 

Получим падающее поле. 
 

 

Рис. 1. Дифракция электромагнитных волн на неоднородном теле 
 
С помощью системы уравнений Максвелла получим описание постав-

ленной задачи: 

 
0

0

ˆrot ,

rot ,
Ei

i

= − ωε +
= ωμ

H E J

E H
 (1) 

где 0
EJ  – ток [1]. 

Потребуем выполнения краевых условий на границе тела для ,E H  

 [ ] | 0.Qτ ∂ =E  [ ] | 0,Qτ ∂ =H   (2) 

где [ ]⋅  – скачок предельных значений. 

Предполагаем выполнение краевых условий излучения на бесконечно-
сти для полей ,E H : 

1
,ik o

r r

∂   − =   ∂   

E
E  

 
1

,ik o r
r r

∂   − = → ∞   ∂   

H
H .  (3) 

Исследуемая задача (1)–(3) является векторной. Получим объемное ин-
тегродифференциальное уравнение [1] вида 

 
Q  

0 0,E H ,E H
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( ) ( ) ( ) ( ) ( )
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2
0

0
1
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y
x x k G r y dy

−  ε  ξ − − −  ε  
J E  

 ( ) ( ) ( ) ( )
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0

0
grad div 1 ,

Q
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G r y dy x x Q

−  ε  − − = ∈  ε  
 E E ,  (4) 

где ( ),G x y  – функция следующего вида: 

( ),
4

ik x ye
G x y

x y

−
=

π −
, 

здесь ( )0 xE  – падающее поле; ( )xJ  – токи поляризации внутри тела, 

( ) ( ) 1

0
1

x
x

−
 ε 

ξ = − ε 
 и ( ) ( ) ( )x x x= ξJ E . 

Необходимо восстановить электромагнитное поле ( )3
2, L Q∈ =E H  

2 2 2( ) ( ) ( )L Q L Q L Q= × × . Ядро уравнения (4) является слабосингулярным [2] и 

имеет особенность. Для задачи (1)–(2) справедливо утверждение о един-
ственности [3]. 

2. Численный метод 

Получим решение уравнения A fϕ =  ( ), f Xϕ ∈  в гильбертовом про-

странстве X  методом коллокации. Приближенное решение n nXϕ ∈  опреде-

ляется из уравнения n n nP A P fϕ = . Здесь n nXϕ ∈  ( nX  есть n -мерное под-

пространство пространства X ), :n nP X X→  – оператор проектирования на 

конечномерное подпространство, который определяется ниже. 
Разобьем область Q  на элементарные подобласти iQ  с кусочно-

гладкими границами iQ∂  так, чтобы выполнялись условия i jQ Q∩ = ∅  при 

i j≠  и i
i

Q Q=  . Выберем в каждой подобласти iQ  точку (узел) коллокации 

ix . Рассмотрим базисные функции 
1,

0,
i

i
i

x Q
v

x Q

∈
=  ∉

. Пусть подпространства nX  

являются линейными оболочками базисных функций: { }1span ,...,n nX v v= . 

Потребуем, чтобы для выбранных базисных функций выполнялось условие 
аппроксимации: 

 lim inf 0
nn x X

x X x x
→∞ ∈

∀ ∈ − = .  (5) 

Проектор :n nP X X→  определим так: ( )( ) ( ) ,i
n iP x x x Qϕ = ϕ ∈ .  

Уравнение n n nP A P fϕ =  эквивалентно следующему: 



Известия высших учебных заведений. Поволжский регион 

University proceedings. Volga region 54

( )( ) ( ) , 1,..., .j j
nA x f x j nϕ = =  

Приближенное решение представляется в виде линейной комбинации 

базисных функций: 
1

n

n k k
k

c v
=

ϕ = . Получим систему линейных алгебраиче-

ских уравнений, подставив полученное представление в схему метода колло-
кации. Задача сводится к отысканию неизвестных коэффициентов kс : 

 ( )( ) ( )
1

, 1,..., .
n

j j
k k

k

c Av x f x j n
=

= =   (6) 

Справедливо следующее определение. 
Определение 1. Метод коллокации будем называть сходящимся для 

оператора A  и Imf A∈ , если существует число N  такое, что приближенные 

уравнения ( )( ) ( ) ,j j
nA x f xϕ =  1,..., ,j n=  имеют единственное решение 

n nXϕ ∈  для всех n N≥  и если эти решения сходятся nϕ → ϕ  при n → ∞  к 
единственному решению ϕ  уравнения A fϕ = . 

Рассмотрим тело Q , являющееся параллелепипедом 

1 1 2 1 2 2 1 3 2{ : ,   ,   }Q x a x a b x b c x c= < < < < < < . Произведем дискретизацию 
задачи. Разобьем тело Q  на элементарные параллелепипеды «конечные эле-
менты»: 

{ }1
1, 1 1 1, 1 2, 2, 1 3, 3 3, 1: ,   ,   klm k k l l l m mx x x x x x x x x x− + + +Π = < < < < < < , 

2 1 2 1 2 1
1, 1 2, 1 3, 1,   ,   ,k l k

a a b b c c
x a k x b l x c m

n n n

− − −= + = + = +  

где , , 0, , 1k l m n= − . Носителем для данной задачи будет являться один из 
конечных элементов. Каждый носитель ориентирован вдоль одной из коор-
динатных осей.  

3. Решение задачи на параллелепипеде 

Пусть тело 1 1 2 1 2 2 1 3 2{ : ,   ,   }x a x a b x b c x cΠ = < < < < < <  является пря-
моугольным параллелепипедом. Построим на Π  равномерную сетку, т.е. разо-
бьем Π  на элементарные подобласти iΠ  с кусочно-гладкими границами i∂Π  

так, чтобы выполнялись условия i jΠ ∩ Π = ∅  при i j≠  и i
i

Π = Π  (рис. 2).  

Чтобы найти решение задачи, применим метод коллокации. Расширен-
ную матрицу для нахождения неизвестных коэффициентов , ,k k ka b c  удобно 
представить в блочной форме: 

11 12 13 1

21 22 23 2

31 32 33 3

A A A B

A A A B

A A A B

 
 
 
 
 

, 
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элементы колонок kB  и матриц klA  определяются из соотношений: 

 ( )0
i k
k iB E x= ,  (7) 

 2
0( ) ( , ) ( ) ( , ) ( ) ,ij l k l l l

kl j j kl j i j ikl
k lQ Q

A v x k G x y v y dy G x y v y dy
x x

∂ ∂= ξ − δ −
∂ ∂    (8) 

, 1,2,3;    , 0, , 1.k l i j N= = −  

 

 

Рис. 2. Тело Q, разбитое на элементарные параллелепипеды 
 
Здесь координаты точки коллокации определяются следующим  

образом: 

( ) ( ) ( ) ( )1 2 3 1 1 1 2 2 2 3 3 3,  ,  ,  1 2 ,  1 2 ,  1 2 .i i i i i i ix x x x x i h x i h x i h= = + = + = +   

Предложенный метод реализован для решения задачи дифракции. 
Представлены результаты решения интегрального уравнения на кубе с разби-
ением сетки 12×12×12. Волна падает вдоль оси 0X. Правая часть матричного 
уравнения равна единице для первой компоненты и нулю для всех остальных. 
На рис. 3 представлены значения модуля первой компоненты электрического 
поля на первом, четвертом, восьмом и двенадцатом слоях соответственно. 

4. Обратная задача дифракции 

Перейдем к рассмотрению задачи восстановления диэлектрической 
проницаемости неоднородного тела. Пусть тело расположено в свободном 
пространстве. Задача является обратной и имеет практическое значение. Рас-
сматриваемая задача использует измеренные параметры поля вне тела, кото-
рые используются для нахождения диэлектрической проницаемости тела. Для 
этого нужно выбрать такие точки наблюдения ( сx ), которые находятся за 

пределами тела.  
Дискретизация задачи выполняется следующим образом. Будем пред-

полагать, что тело Q  содержится в параллелепипеде Q ⊂ Π : 

Q 
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1 1 2 1 2 2 1 3 2

1 2 1 2 1 2

{ ,   ,   }

0 ,   0 ,   0 .

a x a b x b c x c

a a a b b b c c c

Π = < < < < < <
≤ < ≤ ≤ < ≤ ≤ < ≤

 

 

 
а) б) 

 
в) г) 

Рис. 3. Решение задачи на первом (a), четвертом (б), восьмом (в)  
и двенадцатом (г) слоях куба; сетка 12 12 12× × , 1,5,  1,0ix k= = , волна (1,0,0)  

 
Выберем равномерную прямоугольную сетку в ,Π  имеющую размер 

1 2 3N N N× ×  и образованную параллелепипедами  

{ }1, 1 1, 1 2, 2, 1 3, 3 3, 1: ,   ,   klm k k l l l m mx x x x x x x x x x+ + +Π = < < < < < <  

2 1 2 1 2 1
1, 1 2, 1 3, 1

1 2 3
,   ,   ,k l m

a a b b c c
x a k x b l x c m

N N N

− − −= + = + = +

 где 10, , 1k N= − , 20, , 1l N= − , 30, , 1m N= − . 

Пусть тело Q  состоит из q  подобластей jQ  таких, что j
j

Q Q= , 

,i jQ Q i j= ∅ ≠ . Кроме того, пусть подобласти jQ  состоят из объединения 

элементарных параллелепипедов (ячеек) сетки j l
l

Q = Π . 

Внутри каждой ячейки будем считать диэлектрическую проницаемость 
равной константе. Падающее поле генерируется точечным источником, кото-

рый расположен за пределами тела в точке ( )1 2 3
0 0 0 0, ,y y y y=  и имеет вид 
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( )
0

0 0 0
1 2 3

0
, 0

ik x ye
x

x y

−
= = =

−
E E E . Окружим тело Q  точками наблюдения  

(рис. 4), расположенными на некотором удалении от тела Q . Будем распола-

гать их в некотором объемном сегменте за пределами тела.  
 

 

Рис. 4. Вариант расположения точек наблюдения cx   

 
В реальных условиях значение поля в точках наблюдения измеряется 

при помощи различных устройств. Будем моделировать поведение поля  
в точках наблюдения. Получим дифракционное поле в точках наблюдения. 
Для этого решим прямую задачу дифракции (1)–(3) и определим числовые 
характеристики поля ( )xE  внутри тела Q , решая следующее уравнение: 

( ) ( ) ( ) ( ) ( )0 2
0

0

ˆˆ ˆ,E
Q

y
x x k G x y I y dy

 ε 
= + − + ε 

E E E  

 ( ) ( ) ( )
0

ˆˆ ˆgraddiv , ,E
Q

y
G x y I y dy x Q

 ε 
+ − ∈ ε 

 E .  (9) 

Найдем значение поля во внешних точках cx , подставив полученные 

значения поля ( )xE  в формулу 

( ) ( ) ( ) ( )0 2
0

ˆ ,с с E с
Q

x x k G x y y dy= + +E E J  

 ( ) ( )ˆgrad div , , ,E с c
Q

G x y y dy x Q+ ∉ J   (10) 
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затем решим его относительно неизвестной функции  

 ( ) ( ) ( )
0

ˆy
y I y

ε 
= − ε 

J E


.  (11) 

Получив дифракционное поле в точках наблюдения [6], которое необ-
ходимо для решения исследуемой задачи, переходим ко второму этапу реше-
ния задачи, который заключается в нахождении неоднородности тела. Для 
этого решаем уравнение  

( )
( ) ( ) ( ) ( )0 2

0

0

ˆ ,
ˆ ˆ

с
с E с

Q

x
x k G x y y dy

x
I

− = +
 ε 

− ε 


J

E J  

 ( ) ( )ˆgraddiv , , .E с c
Q

G x y y dy x Q+ ∉ J   (12) 

Сложность решения данного уравнения связана с тем, что оно является 
уравнением первого рода. Обратная задача восстановления диэлектрической 
проницаемости тел сводится к решению уравнения (12). Различные методы 
регуляризации или предобусловливания значительно повышают эффектив-
ность решения уравнения. 

Из уравнения (12) находим ( )xJ  и определяем диэлектрическую про-

ницаемость тела ( )ˆ yε  в каждой ячейке, используя уравнение 

( )
( ) ( ) ( )2

0

0

ˆ ,
ˆ ˆ

E
Q

x
k G x y y dy

y
I


− +
 ε 

−  ε 


J

J  

 ( ) ( ) ( )0ˆgraddiv , ,E
Q

G x y y dy x x Q

+ = ∈



 J E .  (13) 

В качестве примера приведем визуализацию результатов определения 
диэлектрической проницаемости тела в свободном пространстве. Размеры те-

ла равны, 0,3 м, 0,3 м, 0,3 мa b c= = = , 1
0 2 мk −= . Размер расчетной сетки 

12 12 12× × .  
На рис. 5 представлено исходное значение модуля диэлектрической 

проницаемости тела, полученное в результате моделирования. 
На рис. 6 представлено восстановленное значение модуля диэлектри-

ческой проницаемости тела. 
Максимум модуля разности между исходным и восстановленным зна-

чением диэлектрической проницаемости не превышает 510− . Для восстанов-
ления данных неоднородностей тела были использованы исходные данные 
без внесения погрешности. 
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Рис. 5. Исходное значение модуля диэлектрической проницаемости тела 
 

 

Рис. 6. Восстановленное значение модуля диэлектрической проницаемости тела 

Заключение 

В работе рассмотрена задача дифракции электромагнитной волны  
в свободном пространстве. Результаты решения задачи показали возможность 
моделирования поля внутри тела и в точках наблюдения, что позволяет про-
водить эксперимент при отсутствии измерительного оборудования. Данная 
задача из интегродифференциальной постановки сводится к линейному виду, 
что позволило решить задачу в два шага. На первом шаге решалось уравне-
ние первого рода, для которого не требуется задание начальных приближе-
ний, необходимых для большинства известных численных методов. На вто-
ром шаге, велся пересчет коэффициентов проводимости и проницаемости ис-
следуемой структуры. Применяя данный алгоритм возможно восстановить не 
только вещественную, но мнимую часть задачи. Представленные в работе ре-
зультаты являются модулем восстановленного и изначального значений. Как 
можно заметить, задача имеет хорошую восстанавливаемость и может быть 
применена на практике.  
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