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ИИХДЕТЕРМИНИРОВАННЫХАНАЛОГОВ

Показано, что решения некоторых классов стохастических дифференциальных и интеграль-
ных уравнений со стохастическим интегралом Стратоновича и их потраекторных аналогов
могут быть сведены к решению некоторой конечной цепочки обыкновенных дифференци-
альных либо интегродифференциальных уравнений. Симметричный интеграл; стохасти-
ческий интеграл Ито; стохастический интеграл Стратоновича; стохастическое дифферен-
циальное уравнение; стохастическое интегральное уравнение; явные формулы для решений

ВВЕДЕНИЕ

В данной работе построены явные форму-
лы для решения некоторых классов стохастиче-
ских дифференциальных и интегральных урав-
нений с многомерным винеровским процессом, а
также для их потраекторных аналогов. Под яв-
ными формулами для решений стохастических
дифференциальных уравнений (в дальнейшем —
СДУ) понимаются обыкновенное дифференци-
альное уравнение или цепочка таких уравне-
ний, которые позволяют найти решение исходно-
го СДУ. До работы [4] явные формулы для ре-
шений были известны лишь применительно к до-
статочно узкому классу уравнений [1]. В работах
[2],[4] явные формулы были построены для СДУ
и систем таких уравнений с одномерным винеров-
ским процессом. Отличительной чертой подхода,
использованного в этих работах, является при-
менение техники симметричных интегралов. По-
нятие симметричного интеграла введено в рабо-
те [3], где были построены симметричные инте-
гралы по произвольной непрерывной функции, в
частности, по траекториям винеровского процес-
са. В этом случае симметричные интегралы совпа-
дают со стохастическими интегралами Стратоно-
вича. Настоящую работу можно считать продол-
жением исследований, проведенных в работах [2–
4].

В данном разделе приводятся необходимые
сведения о симметричных интегралах и связан-
ных с ними конструкциях. В дальнейшем всюду
будем предполагать, что множества � � �����
���, ��� ��, � 
 �, наделены :-алгебрами борелев-
ских множеств, которые соответственно обознача-
ются �, ��, � 
 �, кроме того, на них задана ме-
ра Лебега &���. Для непрерывной функции ��6�,
6 � ��� ��, положим ;��� � �!$ ���6�� 6 � ��� ���,
	��� � ��� ���6�� 6 � ��� ���. В дальнейшем мы бу-
дем использовать следующие обозначения: <� � �
� ����<� ��, < � � � �!$�<� ��, =�)� <� �� � 
#� �� �
���1�� � � 1 ) 1 � � ��.

Пусть теперь ��6�� 6 � ��� ��, — произвольная
непрерывная функция. Рассмотрим разбиения >",
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Определение. Симметричным интегралом [3]
называется
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если предел в правой части равенства существует
и не зависит от выбора последовательности разби-
ений >"� ? � - .

Симметричный интеграл в случае винеровско-
го процесса ��6� � ��6� �� является [4] детерми-
нированным аналогом стохастического интегра-
ла Стратоновича и совпадает с вероятностью 1 с
последним. В случае "�6���6�� � ��6� интеграль-
ные суммы интеграла Стратоновича и симметрич-
ного интеграла совпадают.

Будем говорить, что пара функций ��6�, 6 �
��� ��, и "�6� (�, 6 � ��� ��, ( � �, удовлетворяет усло-
вию �9� на ��� ��, � � ��� ��, [4], если:

a) функция��6�, 6 � ��� ��, непрерывна;

b) при п. в. ( функция "�6� (�, 6 � ��� ��, имеет
ограниченное изменение и непрерывна справа по
6 � ��� ��;

c) при п. в. ( справедливо равенство �

� ����6� � (�
" 
��6� (� � �, где при каждом (
функция 
" 
�6� (� есть полное изменение функции
"�@� (� по переменной @ на отрезке ��� 6�;
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d) полное изменение 
" 
��� (� функции "�6� (�
по переменной 6 на отрезке ��� �� локально сумми-
руемо по (.

В частности, условие �9� выполняется для бро-
уновского движения ��6� � ��6� �� и детерми-
нированной функции "�6� (�, удовлетворяющей
условию b [4].

Пусть функции ��6� и "�6� (� удовлетворяют
условию �9� на ��� ��. Тогда симметричный инте-
грал существует и может быть вычислен по фор-
муле
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Если функция "�6� (� имеет непрерывные частные
производные "�6� (�
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В случае, когда ��6� � ��6� �� – стандартный
винеровский процесс, а детерминированнаяфунк-
ция "�6� (�имеет непрерывнуючастнуюпроизвод-
ную �

�&"�6� (�, формулу Ито можно записать (см.
[4]) в виде
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где первое слагаемое в правой части равенства
есть стохастический интеграл Ито.

1. ЯВНЫЕФОРМУЛЫ
ДЛЯ РЕШЕНИЙПОТРАЕКТОРНЫХАНАЛОГОВ
СТОХАСТИЧЕСКИХ ДИФФЕРЕНЦИАЛЬНЫХ

УРАВНЕНИЙ

В стохастическом исчислении Ито интеграл
по многомерному винеровскому процессу опреде-
ляется как линейная комбинация стохастических
интеграловИто. Оказывается, аналогичная ситуа-
ция будет справедлива и для детерминированных
аналогов стохастических интегралов.

Условие �9�, приведенное выше, является до-
статочным условием существования симметрич-
ного интеграла, однако класс интеграндов, удо-
влетворяющих условию �9�, достаточно узок. По-
этому наша ближайшая цель — обобщить поня-
тие симметричного интеграла на случай более ши-
рокого класса интеграндов, последнее, например,
возможно с помощью построения несобственных

симметричных интегралов при разумном способе
аппроксимации.

Предложение 1. Пусть ���6�, 6 � ��� ��, ! �
� �� �� ����	, – произвольные непрерывные функ-
ции. Обозначим через ��"�

� �6�, ! � �� �� ����	,
6 � ��� ��, ломаные, построенные по последова-
тельности сгущающихся разбиений >". Предпо-
ложим, что функция 7�6� (�� ���� (�� имеет непре-
рывные частные производные первого порядка по
всем своим переменным. Тогда справедлива фор-
мула

7����
�"�
� ���� ���� ��"�

� �����
� 7��� �

�"�
� ���� ���� ��"�

� ���� �

�

��
���

� �

�

�

�(�
7�6��

�"�
� �6�� ���� ��"�

� �6������"�
� �6��

�

� �

�

�

�6
7�6��

�"�
� �6�� ���� ��"�

� �6�� �6� (1.1)

Доказательство. Формула (1.1) следует из
определения дифференциалафункции и тогофак-
та, что для абсолютно непрерывной функции
��6� симметричный интеграл и интеграл Лебега–
Стилтьеса совпадают.

Предложение 2. Пусть ���6�, 6 � ��� ��, ! �
� �� �� ���� (�, – произвольные непрерывные функ-
ции. Обозначим через ��"�

� �6�, ! � �� �� ����	,
6 � ��� ��, ломаные, построенные по последова-
тельности сгущающихся разбиений >". Предпо-
ложим, что функция 7�6� (�� ���� (�� имеет непре-
рывные частные производные первого порядка по
всем своим переменным. Тогда существует предел
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Доказательство. Заметим, что в левой части
выражения (1.1) предел при ? 
 � существует
и равен
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в силу непрерывности функции 7�6� (�� ���� (��.
Точно так же, ввиду непрерывности частных
производных функции 7�6� (�� ���� (�� существует
предел последнего слагаемого в правой части ра-
венства (1.1)
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�6
7�6����6�� ���� ���6�� �6�

откуда следует существование предела (1.2).

Замечание 1. В дальнейшем всюду в соответ-
ствии с принятой в стохастическом анализе систе-
мой обозначений будем записывать предел (1.2)
как
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7�6����6�� ���� ���6�� � ����6�� �����

Если ����6�� ���� ���6��, 6 � ��� ��, – 	-мерный ви-
неровский процесс с независимыми компонента-
ми, то каждое слагаемое в выражении (1.3) имеет
смысл и совпадает с веростностью 1 с соответству-
ющим стохастическим интегралом Стратоновича.

Замечание 2.Сучетом принятого обозначения
(1.3) из доказательства предложения 2 следует ра-
венство
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Пусть ���6�, 6 � ��� ��, ! � �� �� ���� (�,
– произвольные непрерывные функции. Опре-
делим несобственные симметричные интегралы

вида
�!

���

 �

� "��6����6�� ���� ���6�� � ����6�, где

"�6� (�� ���� (�� - борелевскаяфункция, следующим
образом:
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(1.5)

если предел существует и не зависит от выбора
разбиений отрезка ��� ��.

Рассмотрим детерминированный аналог сто-
хастического дифференциального уравнения в
форме Стратоновича

A���� A��� �

��
���

� �
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<��6� A�6�� � ����6� �
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� �
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B�6� A�6�� �6� (1.6)

где ���6�, 6 � ��� ��, ! � �� �� ���� (�, — произволь-
ные непрерывные функции, имеющие неограни-
ченную вариацию на любом конечном отрезке.

Решением уравнения (1.6) будем называть лю-
бую функцию вида A�6� � 7�6����6� � ���� ���6��,

для которой определены (хотя бы в несобствен-
ном смысле) интегралы в правой части уравнения
(1.6) и которая обращает это уравнение в тожде-
ство.

Рассмотрим «допредельный» вариант уравне-
ния (1.6):
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Пусть решение A�"��6� � 7�6��
�"�
� �6�� ����

�
�"�
� �6�� уравнения (1.7) с функцией 7 �

� 7�6� (�� ���� (��, имеющей непрерывные частные
производные первого порядка, существует, тогда,
записав левую часть уравнения (1.7) в виде диф-
ференциала согласно формуле (1.4), приходим к
соотношению
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Вычислим согласноформуле (0.3) каждый из сим-
метричных интегралов из уравнения (1.8) и, под-
ставив их в соотношение (1.8), после алгебраиче-
ских преобразований получим
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Заметим, что при переходе к пределу при ? 

� в равенстве (1.9) получим в правой части функ-
цию ограниченной вариации, в то время как в
левой, вообще говоря, нет, поскольку мы не на-
кладываем на непрерывные функции ���6�, ! �
� �� �� ����	, никаких ограничений. Поэтому будем
искать решение уравнения (1.7) из условия равен-
ства нулю всех интеграндов в формуле (1.9), отку-
да сразу следует равенство нулю всех выражений
в квадратных скобках. Учитывая этот факт, по-
лучим набор обыкновенных дифференциальных
уравнений первого порядка
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где последнее соотношение представляет собой
начальное условие.

Заметим, что решение уравнений (1.10) будет
найдено, если мы найдем решение цепочки урав-
нений

�
�&�

7�6� (�� ���� (�� �

� <��6� 7�6� (�� ���� (���� ! � �� ����	�
�
�%7�6��

�"�
� �6�� ���� �

�"�
� �6�� �

� B�6� 7�6��
�"�
� �6�� ���� �

�"�
� �6����

7��� �
�"�
� ���� ���� �

�"�
� ���� � A����

(1.11)

где от ? зависит только последнее уравнение.

Пример. Рассмотрим нелинейное уравнение

A���� A��� �

� �

�

�A��6� � ����6� �

�

� �

�

�A��6� � ����6� �

�

� �

�

�A��6� �6� A��� � A��

где ���6�, ! � �� �� – непрерывные функции, име-
ющие неограниченную вариацию на любом от-
резке ���� ���, �� �� � – константы. Данное урав-
нение является аналогом соответствующего сто-
хастического дифференциального уравнения. Со-
ставив цепочку обыкновенных дифференциаль-
ных уравнений, получим, что решение уравнения
имеет вид

A�6� � 7�6����6�� ���6�� �

� � �

����6� �����6� � �6� A�
��

�

2. О РЕШЕНИИ
ДЕТЕРМИНИРОВАННЫХАНАЛОГОВ
СТОХАСТИЧЕСКИХ ИНТЕГРАЛЬНЫХ

УРАВНЕНИЙ

Рассмотрим интегральное уравнение

A��� � A��� �

� �

�

<��� 6� A�6�� � ���6� �

�

� �

�

���� 6� A�6�� �6� (2.1)

где ��6� – произвольная непрерывная функция,
имеющая неограниченную вариацию на любом от-
резке. Решением этого уравнения будем называть
любую функцию вида A�6� � 5�6���6��, для кото-
рой имеют смысл интегралы в правой части урав-
нения (2.1) и которое обращает это уравнение в
тождество.

Покажем, что при определенных условиях
гладкости коэффициентов возможно сведение ре-
шения уравнения (2.1) к решению двух урав-
нений, второе из которых является интегро-
дифференциальным уравнением.

Предположим, что решение A�6� � 5�6���6��
существует, и при этом предположении вычислим
симметричный интеграл в правой части уравне-
ния (2.1):� �

�

<��� 6� 5�6���6��� � ���6� �

�

� #���

#���

<��� �� 5��� (�� �(�

�
� �

�

� #�%�

#���

�<��� 6� 5�6� (���
�

% �( �6� (2.2)

Левую часть уравнения (2.1), воспользовавшись
формулой (0.4), можно записать в виде

5�������� � 5��� ����� �

�

� �

�

5�&�6���6�� � ���6� �

� �

�

5�%�6���6�� �6

или

5�������� � 5��� ����� �

� #���

#���

5�&��� (� �(�

�
� �

�

� #�%�

#���

5��&%�6� (� �( �6�

�

� �

�

5�%�6���6�� �6� (2.3)

Значит, уравнение (2.1) можно записать в виде� #���

#���

5�&��� (� �(�
� �

�

� #�%�

#���

5��&%�6� (� �( �6�

�

� �

�

5�%�6���6�� �6 �

�

� #���

#���

<��� �� 5��� (�� �(�
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�
� �

�

� #�%�

#���

�<��� 6� 5�6� (���
�

%�( �6�

�

� �

�

���� 6� 5�6���6��� �6�

Сгруппируем слагаемые

� #���

#���

�5�&��� (�� <��� �� 5��� (��� �( �

�

� �

�

� #�%�

#���

5��&%�6� (� �( �6�
� �

�

5�%�6���6�� �6�

�
� �

�

� #�%�

#���

�<��� 6� 5�6� (���
�

% �( �6�

�

� �

�

���� 6� 5�6���6��� �6�

Далее, воспользовавшись формулой Ньютона–
Лейбница, приходим к уравнению

� #���

#���

�5�&��� (�� <��� �� 5��� (��� �( �

� �5�������� � 5��� ������

�
� �

�

� #�%�

#���

�<��� 6� 5�6� (����% �( �6�

�

� �

�

���� 6� 5�6���6��� �6�

откуда, повторяя рассуждения из предыдущего
раздела, приходим к совокупности уравнений

5�&��� (� � <��� �� 5��� (���

5��������� 5��� ����� �

�
 �

�
���� 6� 5�6���6��� �6�

�  �

�

 #�%�

#���
'
'%<��� 6� 5�6� (�� �( �6�

5��� ����� � A��

(2.5)

Решая первое уравнение, получим, что равенство 
'(

������(� � ( � ����, где ���� – неизвестная функ-
ция, определяет неявную функцию 5 � 7���� ( �
� �����, поэтому второе уравнение из (2.5) есть
уравнение на неизвестную функцию ����.

Аналогичным образом может быть найдено яв-
ное решение для более сложных уравнений. Рас-
смотрим детерминированный аналог стохастиче-
ского интегрального уравнения в форме Страто-
новича

A���� A��� �

��
���

� �

�

<���� 6� A�6�� � ����6� �

�

� �

�

���� 6� A�6�� �6� (2.6)

где несобственные симметричные интегра-
лы, определенные выше, рассматриваются

по произвольным непрерывным функциям
���6�� ���� ���6�.

Решением уравнения (2.6) будем называть лю-
бую функцию

A�6� � 5�6����6�� ���� ���6���

для которой интегралы в правой части уравнения
(2.6) определены (хотя бы в несобственном смы-
сле) и которое обращает это уравнение в тожде-
ство.

Предполагается, если не оговорено противное,
что все рассматриваемые ниже функции имеют
столько, сколько необходимо, непрерывных част-
ных производных. Покажем, что техника симмет-
ричных интегралов при определенных условиях
гладкости коэффициентов уравнения (2.6) позво-
ляет свести решение уравнения (2.6) к решению
цепочки интегродифференциальных уравнений.

Рассмотрим «допредельный» вариант уравне-
ния (2.6):

A�"����� A�"���� �

�
��

���

� �

�

<���� 6� A
�"��6�� � ���"�

� �6� �

�

� �

�

���� 6� A�"��6�� �6� (2.7)

здесь уже все симметричные интегралы имеют
смысл, так как условие �9� выполнено. Будем ис-
кать решение этого уравнения в виде A�"��6� �

� 5�6��
�"�
� �6�� ��� �

�"�
� �6��� Так же, как и раньше,

воспользовавшись формулой (0.4) для дифферен-
циала, уравнение (2.7) запишем в виде

��
���

� �

�

"
�

�(�
5�6��

�"�
� �6�� ���� ��"�

� �6�� �

� <���� 6� 5�6��
�"�
� �6�� ���� ��"�

� �6���

#
� ���"�

� �6� �

�

� �

�

"
���� 6� 5�6��

�"�
� �6�� ��� ��"�

� �6����

� �

�6
5�6��

�"�
� �6�� ��� ��"�

� �6��

#
�6� (2.7’)

Вычислим согласно формуле (0.3) симметричные
интегралы в левой части последнего равенства

� �

�

"
�

�(�
5�6��

�"�
� �6�� ��� ��"�

� �6���

� <���� 6� 5�6��
�"�
� �6�� ��� ��"�

� �6���

#
� ���"�

� �6� �

�

� #
���
�

���

#
���
�

���

"
�

�(�
5����

�"�
� ���� ���

���� �
�"�
������� (�� �

�"�
������� ������ �

�"�
� ���� �

� <���� �� 5����
�"�
� ���� ���

���� �
�"�
������� (�� �

�"�
������� ���� �

�"�
� �����

#
�(� �
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�
� �

�

� #
���
�

�%�

#
���
�

���

�

�6

"
�

�(�
5�6��

�"�
� �6�� ���

����
�"�
����6�� (�� �

�"�
����6�� ���� �

�"�
� �6�� �

� <���� 6� 5�6��
�"�
� �6�� ���

����
�"�
����6�� (�� �

�"�
����6�� ���� �

�"�
� �6���

#
�(��6� (2.8)

Подставив полученные выражения для симмет-
ричных интегралов в уравнение (2.8), получим

��
���

�� #
���
�

���

#
���
�

���

"
�

�(�
5����

�"�
� ���� ���

���� �
�"�
������� (�� �

�"�
������� ���� �

�"�
� ���� �

� <���� �� 5����
�"�
� ���� ���
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�"�
������� (�� �

�"�
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�"�
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#
�(� �

�
� �

�

� #
���
�

�%�

#
���
�

���

�

�6

"
�

�(�
5�6��

�"�
� �6�� ���

���� �
�"�
����6�� (�� �

�"�
����6�� ���� �

�"�
� �6���

� <���� 6� 5�6��
�"�
� �6�� ���

���� �
�"�
����6�� (�� �

�"�
����6�� ���

���� ��"�
� �6���

#
�(��6

�
�

�

� �

�

"
���� 6� 5�6��

�"�
� �6�� �

�"�
� �6�� ���

���� ��"�
" �6���� �

�6
5�6��

�"�
� �6�� �

�"�
� �6�� ���

���� ��"�
" �6��

#
�6� (2.9)

В силу рассуждений, приведенных в предыдущем
параграфе, сначала приходим к набору уравнений

5�&� ��� (�� �
�"�
� ���� ��� �

�"�
� ���� �

� <���� �� 5��� (�� �
�"�
� ���� ��� �

�"�
� ������
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5��� �
�"
� ���� �

�"�
� ���� ���� �

�"�
� ���� � A��

а затем стандартные рассуждения приводят к це-
почке уравнений

5�&� ��� (�� ���� (�� � <���� �� 5��� (�� ���� (����

! � �� ����	�

5����������� ������ ��� ������ �

� ���� �� 5��������� ������ ��� ������� �

�
��

���

" ��
�

� #��%�

#����

�
�

�6

�

�(�
5�6����6�� ���

���� �����6�� (�� �����6�� ���� ���6���
� �

�6
<���� 6� 5�6����6�� ���

���� �����6�� (�� �����6�� ���

���� ���6���

�
�(��6

#
�

�

��
�

�
���� 6� 5�6����6�� ���6�� ��� ���6����

� �

�6
5�6����6�� ���6�� ��� ���6��

�
�6 � ��

5��� ������ ������ ��� ������ � A��
(2.10)
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