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Аннотация. На основе континуальной математической модели проведено 
асимптотическое исследование одномерной стационарной задачи о радиальном 
транспорте воды и растворенного в ней химического компонента в корне. Модель 
основана на представлении растительной ткани в виде твердого каркаса, 
заполненного двухфазной жидкостью (внеклеточной и внутриклеточной). Обе фазы 
содержат растворенное вещество. Рассматривается случай отсутствия барьера 
для перемещения внеклеточной жидкой фазы. Продемонстрирована высокая 
степень совпадения численного и асимптотического решений, что подтверждает 
пригодность используемого численного метода для рассматриваемой задачи. 
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ВВЕДЕНИЕ 
Модель транспорта воды и растворенных в ней веществ через 

неспециализированную растительную ткань необходима для обоснованного анализа 
различных гипотез об организации транспорта в корне и листе. Такой транспорт 
включает в себя непосредственный транспорт из клетки в клетку через соединительные 
канальцы в клеточной стенке (симпластный транспорт) и движение воды по 
внеклеточному пространству (апопластный транспорт).  

Большинство авторов используют при решении частных задач упрощенные 
компартментальные модели, не имеющие отчетливого физического смысла и плохо 
поддающиеся обобщениям [5]. В [6] развит континуальный подход применительно  
к радиальному транспорту в корне. Проведено численное исследование этой 
континуальной модели, в результате которого было замечено, что модель содержит 
несколько малых параметров, в результате чего в решении появляются пограничные 
слои. В связи с этим в предлагаемой работе проведен асимптотический анализ модели, 
который позволил оценить отличие численного решения от асимптотического и 
провести контроль численного метода. 

ПОСТАНОВКА ЗАДАЧИ 
Аналогично работам [1, 3, 4, 7] будем рассматривать растительную ткань как 

пористую сплошную среду. Пористая среда состоит из двух жидких фаз, первая  
из которых находится во внутриклеточном пространстве, вторая – во внеклеточном, 
фильтрующихся через недеформируемый твердый каркас. Пусть внутриклеточная 
жидкость перемещается со скоростью U, а внеклеточная со скоростью V.  
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Давление внутриклеточной жидкости обозначим 1P , внеклеточной жидкости – 2P . 
Долю внутриклеточной жидкости в среде будем характеризовать объемной 
концентрацией 1 , а внеклеточной жидкости – объемной концентрацией 2 , которые 
будем полагать постоянными. Для размазанных плотностей внутриклеточной и 
внеклеточной жидких фаз получаем выражения: *

1 1 1=   , *
2 2 2=   , где через *

1 , *
2  

обозначены истинные плотности этих фаз, которые считаем постоянными и равными 
одна другой. Предполагается, что в каждой фазе растворен обобщенный 
низкомолекулярный компонент с массовыми концентрациями 1C  и 2C  соответственно, 
способный перемещаться в среде как активными механизмами переноса через 
мембраны, так и путем конвекции и диффузии. Во внутриклеточной среде присутствие 
этого компонента ведет к возникновению осмотической силы, связанной  
с перемещением жидкости через распределенные клеточные мембраны.  

Как показано в работе [7], важное значение играет наличие локализованного 
барьера (поясков Каспари) для перемещения жидкости и солей во внеклеточном 
пространстве. Наличие этого барьера приводит к появлению дополнительных 
пограничных слоев, и задача существенно усложняется. Поскольку нашей целью является 
проверка правильности численного метода, то будем решать задачу  
в отсутствии барьера. При написании уравнений и граничных условий следуем работе [7].  

Рассмотрим одномерное течение на отрезке [0, ]xl , т.е. пористая среда занимает 
область 0 xx l  , где = 0x  – координата раздела среды с окружающей средой и  

= xx l  – координата раздела среды с центральной областью, содержащей сосуды 
ксилемы.  

 
1 2 1 0 2 1= (( ) ( )),p

dU L P P R C C
dx

    
 

 
2 2 1 0 2 1= (( ) ( )),p

dV L P P R C C
dx

      
 

 
1 1

1 = ,dP dCkU
dx dx

   
 

 
2

2 = ,dP mV
dx

 
 

 

2
1 1

1 2 1 1 1 2

( ) = ( ) ,A
d CU d CC C J D

dx dx


       
 

 

2
2 2

2 2 1 2 2 2

( ) = ( ) .A
d C V d CC C J D

dx dx
       

 
Здесь = / sR RT   (  – плотность жидкости; R  – универсальная газовая 

постоянная; T  – абсолютная температура; s  – молярная масса растворенного 
вещества); 0  – коэффициент отражения мембраны; pL  – объемный коэффициент 
гидравлической проницаемости мембраны;   – коэффициент проницаемости 
мембраны для растворенных веществ; AJ  – активный поток компонента; 1D  и 2D  – 
коэффициенты диффузии растворенного вещества во внутриклеточной и внеклеточной 
средах; 1/k   и 2/m   – коэффициенты гидравлических сопротивлений (обратные  
к коэффициентам гидравлических проводимостей);   и 1/   – коэффициенты, 
характеризующие взаимодействие клеточной стенки с растворенным веществом.  



Асимптотическое исследование транспортных процессов в корне растения  

ISSN 1812-5123. Российский журнал биомеханики. 2012. Т. 16, № 2 (56): 59–67 61 

Рассмотрим следующие граничные условия [7]. Будем считать, что 
концентрация внешнего раствора на входе ( = 0x ), а также давления во внешней среде 
на входе и на выходе  ( = xx l ) заданы. Полагая, что внеклеточная жидкость имеет 
непосредственный контакт с внешней средой и сосудами ксилемы, а поступление 
жидкости и растворенных веществ во внутриклеточную среду осуществляется путем 
массообмена только с внеклеточной жидкостью, ставим следующие условия на 
внешней и внутренней границах:  

 
1

2 20 2 20
=0

(0) = , (0) = 0, = 0, (0) = ,
x

dCP P U C C
dx  

 

1 2
2 2

= =

( ) = , ( ) = 0, = 0, = 0.x x x
x l x lx x

dC dCP l P U l
dx dx

 
Последнее условие означает чисто конвективный унос растворенного вещества  

в сосуды ксилемы.  
Перейдем к безразмерным переменным. В качестве характерных значений 

концентрации, давления, скорости и координаты выберем следующие величины:  

 
* 2

* 2 * * * *
( )= , = , = , = .A e

e x
x

J c Cc C p c R v l l
kl

 




 

Введем безразмерные величины:  

 

1 * 2 * * *
1 2 1 2

* * * * 1 * 2 *

= , = , = , = ,
p p

v v l lA A
L l c R L l c R v v
   

   
  

 

 
* * 1 2

1 2 1 2
1 * * 2 * * * * * *

= , = , = , = ,A A
l l D DJ J J J D D
v c v c v l v l 

 
 

 * * * *

1 * 2 * 1 *

= , = , = .kv l mv lk m
p p c R




  
    

В безразмерном виде система уравнений и граничных условий примет 
следующий вид:  

 1 2 1 0 2 1= ( ),duA P P C C
dx

    

 2 2 1 0 2 1= ( ),dvA P P C C
dx

      

 1 1= ,dP dCku
dx dx

    

 2 = ,dP mv
dx

  

 
2

1 1
1 2 1 1 1 2

( ) = ( ) ,d C u d CC C J D
dx dx


     

 
2

2 2
2 2 1 2 2 2

( ) = ( ) ,d C v d CC C J D
dx dx

     

 1
2 2 20= 0 : = 0, = 0, = 0, = ,dCx P u C C

dx
 

  1 2
2 21= 1: = , = 0, = 0, = 0.dC dCx P P u

dx dx
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Аналогичная система была решена численно в работе [7]. Для этого была 
построена консервативно-неявная схема, которая решалась методом итераций. На 
каждой итерации использовался метод прогонки. Кроме того, в работе [7] были 
сделаны оценки, которые позволяют принять следующие выражения для 
коэффициентов:  

 4 4 3 4 31
1 2 0

1 2

1= , = , = , = , = , =1,DA A
J D

        

где   – малый параметр.  
Получаем систему уравнений, для которой будем искать асимптотическое 

решение  
 4

2 1 2 1= ( ),u P P C C     

 4
2 1 2 1= ( ),v P P C C      

 1 1' = ,'P ku C    (1) 

 2
1= ,'v P
m

  

 3 3
1 1 2 1 1 1( ) = ( ) ,''C u C C J C       

 4
2 2 2 1 2 2( ) = ( ) ''C v C C J C      

со следующими граничными условиями:  

 2 2 20 1(0) = 0, (0) = 0, (0) = , (0) = 0,'u P C C C  

 2 21 2 1(1) = 0, (1) = , (1) = 0, (1) = 0.' 'u P P C C  (2) 

Поскольку коэффициент   близок к 1, то множитель 1 ( )O  . 

АСИМПТОТИЧЕСКОЕ РЕШЕНИЕ 
Приведем систему уравнений (1) к системе двух уравнений, исключая из нее 

переменные 1 2, , ,P u v C . Получим следующие уравнения для внеклеточного давления 

2P  и внутриклеточной концентрации 1C :  

 
3

3
1 2 1 1( ) =' 'C P M C

m
     

 
4

3
1 2 2 1 1 2 1 1= 1 ,k'' ''P P C kM x M J C

m m
                 

 

 
4 4

2 2 2 1 1 21 (1 ) ' =k' ''P P P C kM x M
m m m
               

   
 (3) 

 
4

2 2 2 1 1 2 2= 1 k''P P C kM x M J
m m

                
 

 
4

( )
2 2 11 (1 ) .IV k '' ''P P C

m m
             
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Ввиду того что при получении системы дважды выполнялось интегрирование, 
уравнения включают две произвольных константы 1M  и 2M . Система уравнений (3) 
представляет замкнутую систему относительно переменных 1C  и 2P . Остальные 
неизвестные могут быть легко получены из исходной системы (1) при известных 1C  и 2P .  

Граничные условия (2) в переменных 1C  и 2P  имеют следующий вид:  

 
 2 1 2 2 20 2 1 14

4 2
2 1 2 21 2 1 1

(0) = ( ), (0) = 0, (0) = ( ) (1 ) (0) , (0) = 0,

(1) = ( ), (1) = , (1) ( ) = 0, (1) = 0.

m' '' 'P mM P P C M C C

' ''' 'P mM P P P m M C

      


   

 (4) 

В связи с наличием в задаче малых параметров будем рассматривать 
асимптотическое поведение решения.  

Внешнее решение будем искать в следующем виде:  

 
0 2 1

2 2 2
0

1 1

( ) = ( ) ( ),

( ) = ( ).

P x P x P x
C x C x

 
 (5) 

При написании соотношений (5) принято допущение о структуре решения 
вблизи точек = 0x  и = 1x , правомерность которого будет обоснована ниже.  

Подставим решение (5) в систему (3). Воспользуемся тем фактом, что  
в исследуемой задаче в силу обезразмеривания выполнено соотношение 1 2 2 1=J J  , 
что значительно упрощает выкладки. Окончательно получаем:  

 
21

2 01 1 02 2 11 12
1

1 01 02

= ( ) ( ),

= ,

m JP E kM x E M E x E
k m

C E x E

 
           



 (6) 

где 01 02 11 12, , ,E E E E  – подлежащие определению константы.  
Теперь построим решение вблизи границ = 0x  и = 1x . Проведём анализ 

граничных условий, чтобы определить, как ведут себя производные.  
Рассмотрим сначала граничные условия при = 1x . Имеем  

 
2

1
2 1 2 4(1) = ( ) = (1), (1) = .m M' '''P mM O P


 (7) 

Найдем толщину пограничного слоя вблизи = 1x . Исходя из первого 
соотношения в (7) ищем решение в виде 

 
2 21 2

1= ,xP P P     
 где = ( ) 1    .  

Из второго соотношения в условии (7) получаем, что 2=  .  
Как видно из оценки, во втором уравнении системы (3) не остаётся членов, 

содержащих 1C , что позволяет найти 2P  из этого уравнения, а затем, используя это 
решение, найти 1C  из первого уравнения системы (3).  

Сделаем замену переменных 2=  ,  2

1= xx 


 и   21 2
2 2

( )( ) = P P xP x 


. Из второго 

уравнения системы (3) получаем:  

  ( )
22

1 1 = 0.
IV ''kP P

m m
   
 

 



Е.Н. Юдина 

ISSN 1812-5123. Российский журнал биомеханики. 2012. Т. 16, № 2 (56): 59–67 64 

Решение этого уравнения имеет вид 

    
2 0 1 2 3= ,x m k x m kP e e x       

где 0 1 2 3, , ,     – константы, подлежащие определению. Коэффициент 1 = 0  
находим из условия сращивания с внешним решением [2] для 2P  из (6). С учётом 
граничного условия 2 21(1) =P P  имеем следующее решение в пограничном слое вблизи 

= 1x :  

  22 (1 )/
2 21 2 0= (1 ) 1 .m k xP P x e         (8) 

Из граничных условий (7) имеем:  

 3/20
1 2 0 1 2

1= ( ), = ( ) .M m k M m k
m m


     (9) 

Аналогично в пограничном слое вблизи = 0x  решение ищем в виде  

 
2 2= ,xP P     

  

где 2= .   

С учетом граничного условия 2 (0) = 0P  получаем  

  22 /
2 2 0= 1 ,m k xP x e         (10) 

где 0 2,   – константы, подлежащие определению.  
Из остальных граничных условий (7) при = 0x  следует:  

 2
1 2 0 2 20 0 1

1= ( ), = (1 ) (0).m kM m k M C C
m m


          (11) 

Из сращивания (10) с внешним решением для 2P  из (6) на границе = 0x  
получаем:  

  2 01 1= ,m E kM
m k

  


 

 1
02 2

1

0 = ,JE M  


 

 0 12= .E  

Из сращивания (8) с внешним решением для 2P  из (6) на границе = 1x  имеем:  

  2 01 1= ,m E kM
m k

  


 

 1
21 2 02 2

1

= ,m JP E M
m k

 
      

 

 0 11 12= .E E   



Асимптотическое исследование транспортных процессов в корне растения  

ISSN 1812-5123. Российский журнал биомеханики. 2012. Т. 16, № 2 (56): 59–67 65 

Используя полученные выше соотношения, а также соотношения (9) и (11), 
находим  

 0 21 2 21 0 21 2 21= , = , = , = ,m mP P P P
k m k k m k

     
 

 

 21 20 21
01 02 1

1

1= 0, = (0) ,J C P m kE E C
k

 
   

    
 

 21 21
11 12= 2 , = ,P m P mE E

k k m k k m


 
 

 2
1 21 2 20 1 21= , = (1 ) (0) .m k m kM P M C C P

mk k
 

    

Выпишем равномерно пригодное решение [2] для 2P :  

  2 22 / ( 1)/21
2 21( ) = 2 1 .m k x m k xP mP x P x x e e

k m k
         


 (12) 

Теперь, используя решение (12) для 2P , найдём решение для 1C . Для этого 
подставим полученное решение в первое уравнение системы (3):  

 
2 23 / (1 )/ 221

1
2 1m k x m k xP 'e e C

k m k
               

 

  2 2/ (1 )/
21 1 =m k x m k xm kP e e C

k
       

    (13) 

 3 2
1 1 1 1 21 1 20 1= 2 .m k''C C P x C J

k


        

Рассмотрим следующее решение уравнения (13):  

 20 1
1

1

= о(1).C JC  
  

 (14) 

Следующее приближение не ищем, так как решение (14) удовлетворяет 
граничным условиям для 1C . Таким образом допущение (5) о структуре внешнего 
решения оправдано.  

Отсюда найдем 2M :  

 21
2 20 20 21

1

1= .J m kM C C P
k

   
      

 

Получаем решение для u , v , 1P , 2C :  

 

 
 

2 2/ ( 1)/ 221 21 21 21

2 2/ ( 1)/ 221 21 21

2 22 / ( 1)/1 21
1 21 20

1

2 21
2 20

( )= 2 ,

= 2 ,

1= 1 2 ,

= 2 .

m k x m k x

m k x m k x

m k x m k x

P P P m k Pu e e
m k mk k m k

P P Pv e e
m k k m k

J P mP P x C e e x
km k

P m kC C x
k

      

      

      


    



    


                 


 

 (15) 
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Анализ асимптотического решения (12), (14), (15) показывает, что структура 
функций в пограничных слоях определяется безразмерными коэффициентами 
гидравлических сопротивлений m  и k . Все параметры модели входят  
в асимптотическое решение: таким образом, модель не переопределена. 

СРАВНЕНИЕ АСИМПТОТИЧЕСКОГО И ЧИСЛЕННОГО РЕШЕНИЙ 
Результаты сравнения представлены для следующих значений параметров, 

соответствующих оценкам, данным в статье [7]:  
 1 2 1 2= 2; = 0,052; = 1; = 0,026; = 0, 44; = 1; = 1; = 0,1.J J k m     

 

а 

 
 
 

 
б 

Рис. Сравнение распределений внутриклеточного давления (а) и внутриклеточной  
 скорости (б) (сплошная линия – численное решение, пунктирная – асимптотическое) 

На рисунке приведены результаты численного расчета и асимптотического 
анализа для внутриклеточного давления 1P  и внутриклеточной скорости u . Из 
графиков видно, что решения отличаются между собой не более, чем на  . Результаты 
для внеклеточного давления 2P , внеклеточной скорости v , внутриклеточной и 
внеклеточной концентраций 1C  и 2C  не приводятся, так как численное и 
асимптотическое решения совпадают с графической точностью. 

ЗАКЛЮЧЕНИЕ 
Найдено асимптотическое решение одномерной стационарной задачи  

о радиальном транспорте воды и растворенного в ней химического компонента в корне 
в предположении отсутствия барьера для перемещения внеклеточной жидкой фазы. 
Продемонстрирована высокая степень совпадения численного и асимптотического 
решений, что свидетельствует о корректности асимптотического подхода и 
подтверждает пригодность используемого численного метода для рассматриваемой 
задачи. 
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ASYMPTOTIC ANALYSIS OF TRANSPORT PROCESSES  
IN THE PLANT ROOT 

E.N. Yudina (Moscow, Russia) 

The one-dimensional stationary problem of the radial transport of water and  
a chemical component dissolved in it across the root is solved using asymptotical analysis 
based on a continuum mathematical model. The model represents the plant tissue as a solid 
framework filled with a two-phase liquid (extracellular and intracellular). Both phases contain 
a solute. The case of the absence of a barrier impermeable to the extracellular fluid phase 
(Casparian bands) is considered. Comparison of the numerical and asymptotic solutions 
demonstrates a high degree of coincidence, which confirms the applicability of the numerical 
method used to this problem. 

Key words: asymptotical methods, mathematical models, transport processes, multiphase 
media. 
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