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Стандартные ошибки в форме Ньюи–Веста

Работа Уитни Ньюи (Whitney K. Newey) и Кеннета Веста (Kenneth D. West), перевод 
которой приведен ниже, является одной из самых цитируемых и широко известных 
статей в экономике благодаря своей обширной области применения. Она отвечает на 

вопрос, как правильно оценить точность оценивания, т. е. стандартные ошибки оценки, в си-
туации, когда доступные наблюдения коррелированы друг с другом. Если два наблюдения 
положительно коррелированны между собой, они содержат меньше информации о среднем 
своих математических ожиданий, чем так же распределенные, но независимые наблюдения, 
поскольку в первом случае отклонения от теоретического среднего обоих слагаемых чаще 
оказываются направлены в одну и ту же сторону. В итоге точность оценки в первом случае 
будет ниже, чем во втором.

Коррелированность наблюдений является типичным свойством данных, используемых 
в макроэкономике, финансах и международной торговле — всюду, где данные имеют струк-
туру временных рядов, т. е. одна и та же переменная наблюдается в течение нескольких пе-
риодов. Приводимая ниже статья дает рецепт, как оценивать точность оценок в этом слу-
чае, накладывая минимальные требования на структуру данных (типа стационарности) 
и не ограничивая структуру зависимости. Данная статья является прекрасным примером 
полупараметрического оценивания временных рядов. Полупараметрическим называется 
состоятельное оценивание маломерного параметра — в данном случае асимптотической 
ковариационной матрицы — зависящего от немоделируемой бесконечномерной структуры 
временной корреляции между различными наблюдениями, которая не может быть оценена 
состоятельным образом.

Уитни К. Ньюи, профессор экономики Массачусетского технологиче-
ского института (MIT), известен своими работами по непараметрическому 
и полупараметрическому оцениванию. В его интересы также входят пробле-
мы эффективного оценивания и эффективного выбора инструментов в рег-
рессиях.

Кеннет Д. Вест, профессор экономики в университете Висконсина в Мэ-
дисоне, является известным специалистом по временным рядам, проблемам 
макроэкономического оценивания и прогноза.

Оба автора получили свои докторские степени (Ph. D.) в Массачусетском 
технологическом институте.
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М ножество современных моделей рациональных ожиданий были оценены с помо-
щью методологий, разработанных в (Hansen, 1982; Hansen, Singleton, 1982; Cumby, 
Huizinga, Obstfeld, 1983; White, Domowitz, 1984). Предложенные в этих работах 

методы оценивания используют следующее условие ортогональности: Eht ( )* =0, где * — 
( )k1  вектор неизвестных параметров, ht   — ( )r1  вектор функций, зависящих от дан-
ных и параметров модели, причем r k . Это условие ортогональности может быть исполь-
зовано для построения оценок * с помощью обобщенного метода моментов (GMM, 
(Hansen, 1982)) путем выбора оптимального вектора  в качестве решения задачи

1	 Оригинальная статья: Newey W. K., West K. D. (1987). A simple, positive semi-definite, heteroskedasticity and 
autocorrelation consistent covariance matrix. Econometrica, 55 (3), 703–708. © Econometric Society.
The copyright to this article is held by the Econometric Society, http://www.econometricsociety.org/. It may be 

downloaded, printed and reproduced only for personal or classroom use. Absolutely no downloading or copying may 
be done for, or on behalf of, any for-profit commercial firm or for other commercial purpose without the explicit 
permission of the Econometric Society. For this purpose, contact the Editorial Office of the Econometric Society at  
econometrica@econometricsociety.org.
Редакция благодарит Econometric Society за разрешение на публикацию перевода статьи.
Перевод статьи выполнен студентами НИУ ВШЭ И. Станкевичем и Д. Малаховым, под редакцией профес-

сора НИУ ВШЭ П. К. Катышева. 
2	 Мы благодарны Stephen Cecchetti, Lars Hansen, John Huizinga и двум редакторам за полезные коммента-

рии. Мы также благодарны NSF (Национальный Научный Фонд — прим. редакции) за поддержку грантами 
SES-8410249 и SES-8511070. Пока данная работа была в редакции, Вест был стипендиатом (National Fellow) 
Гуверовского института. 

Уитни К. Ньюи, Кеннет Д. Вест
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	 min  h W hT T T   , 	 (1)

где h h TT
t

T

t=  
=


1

 /  — вектор выборочных моментов ht  , а WT — это (возможно) случай-

ная, симметричная взвешивающая матрица.

Как было показано в (Cumby, Huizinga, Obstfeld, 1983; Hansen, 1982; White, Domowitz, 
1984), асимптотическая ковариационная матрица  выглядит следующим образом:

	 V H W H H W S W H H W HT T T T T T T T T T T T=     
- -1 1

, 	 (2)

где HT =
i

T

th T
=

  
1

E  
* / , ht 

*  — r k  матрица частных производных ht  , WT  — не-

случайная матрица такая, что plim W WT T- =0, а S h h TT
s

T

t

T

t s=  
= =


1 1

E ( ) ( ) /* *  . Состоя-

тельная оценка асимптотической ковариационной матрицы необходима для того, чтобы 
строить доверительные интервалы и проводить тесты. Оценки HT и WT построить достаточ-
но несложно, потому что WT  есть естественная оценка WT  , а для HT при выполнении усло-
вий регулярности из (Hansen, 1982) или (White, Domowitz, 1984) справедливо следующее 
утверждение:

	 H h TT
t

T

t  



1

0( ) / P .	 (3)

Оценивание ST намного сложнее, а также гораздо более важно, чем оценивание HT и WT  . 
Как было показано в (Hansen, 1982), оптимальная GMM оценка параметра (в смысле ми-
нимизации значения VT) может быть получена только когда WT  есть состоятельная оценка 
(ST)

–1, таким образом, корректная оценка ST крайне важна для получения оптимальных зна-
чений GMM оценок параметров. Простейшая оценка ST может быть представлена в сле-
дующем виде:

	   ST
j

m

j j=    
=

  0
1

,    j
t j

T

t t jh h T= 
= 

-
1

/ ,	 (4)

где  h ht t= ( ) . Значение m — это число выборочных автокорреляций, обычно значение m 
принимается равным числу ненулевых автокорреляций в  ht ( )* , которое известно априор-
но (см., например, (Cumby, Huizinga, Obstfeld, 1983; Hansen, Singleton, 1982; West, 1986)). 
В других ситуациях число ненулевых автокорреляций неизвестно априорно и, вообще гово-
ря, их может быть бесконечно много (West, 1985, 1987). В таких случаях в качестве состоя-
тельной оценки для ST тоже можно взять ST  (т. е. S ST T-   P 0), но при этом m считается 
функцией m(T), зависящей от объема выборки, причем величина m с ростом выборки растет 
достаточно медленно (подробнее см. (White, Domowitz, 1984) и Теорему 2 ниже).

Поскольку ST  есть состоятельная оценка, то матрица ST  не должна быть обязательно 
положительно полуопределенной матрицей в любой конечной выборке, когда m не равно 
нулю. Из этого следует, что оценка матрицы VT , в которой ST  играет роль средней матри-
цы, не обязательно должна быть положительно полуопределенной. Также это свойство ST  
напрямую влияет на построение асимптотических доверительных интервалов и тестиро-
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вание гипотез. Действительно, оцененные дисперсии и тестовые статистики могут быть 
отрицательными для некоторых линейных комбинаций , когда оцененная ковариацион-
ная матрица не является положительно полуопределенной. В дополнение, сама оценка ST  
в случае, когда эта матрица не является положительно полуопределенной, может вызывать 
проблемы, т. к. по комментариям John Huizinga итерационные алгоритмы для расчета оп-
тимальной GMM оценки  W ST T= -1

 могут работать плохо, если ST  не является положи-
тельно полуопределенной.

В работах (Eichenbaum, Hansen, Singleton, 1985) и (Cumby, Huizinga, Obstfeld, 1983) были 
предложены методы оценивания матрицы ST во временной области в случае, когда эта мат-
рица положительно полуопределена. Но эти процедуры крайне тяжело применять на прак-
тике. Hansen (1982) предложил спектральные методы оценки ST  , аргументируя это тем, что 
в случае ковариационной стационарности предел ST в 2p раз больше спектральной плот-
ности ht ( )*  при нулевой частоте. Хотя подобные алгоритмы расчета оценки ST достаточно 
нетривиальны, они не требуют много времени для своей реализации. Следуя работе (West, 
1985), предлагается рассчитывать оценку ST  простым способом по аналогии с  ST :

	   S w j mT
j

m

j j=    
=

  0
1

( , ) , w j m
j

m
, = -


1

1
. 	 (5)

Эта оценка численно эквивалентна спектральной плотности ht ( )*  в окрестности нуля, ум-
ноженной на 2p. В качестве весов используются модифицированные весовые функции Барт-
летта (Bartlett) для сглаживания выборочных автокорреляционных функций (подробнее см. 
(Anderson, 1971, раздел 9.2)). Заметим, что оценка ST  строится аналогичным с  ST  образом, но 
используются весовые функции w j m j m, ( ) = - 1 1 , значения которых уменьшаются при 
росте j. Подобный метод оценки ST на основе ковариационного сглаживания был предложен 
в работе (Doan, Litterman, 1983)3. Положительная полуопределенность матрицы ST  следует 
из положительной полуопределенности выборочных автоковариационных функций.

Теорема 1. Матрица ST  положительно полуопределена.

Доказательство. Для любого вектора c  размерности (r  1) имеем: 

 = 
=

c S c w j m jT
j

m

w w0
1

2 ( , ) ( ), 

где w j c h c h T
t j

T

t t j =  
= 

-
1

( )( ) /  , j T=  -0 1 1, , , . Пусть P pij=  — симметричная матрица 

размерности m1, причем p i jij = -w(| |). Положительная полуопределенность P доказа-
на, например, в работе (McLeod, Jimenez, 1984). Пусть e — вектор размерности ( )m 1 1 , 
составленный из единиц. Тогда
	  =   c S c e Pe mT / ( )1 0. 	 (6)

Другой выбор взвешивающих матриц w j m( , )  также позволяет получить положитель-
но полуопределенную матрицу оценки ST . Если вектор единиц в этом доказательстве заме-

3	 Doan и Litterman (1983) не доказывали ни положительную полуопределенность матрицы ST , ни состоятель-
ность оценки. 
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нить на ( , ), ( , ), , ( , )0 1m v m v m m , где v (  j, m) — произвольное число, можно показать, что 
положительная полуопределенность интересующей нас матрицы сохраняется при следую-
щем выборе весов:

	 w j m v l m v l j m v l m
l

m j

l

m

( , ) ( , ) ( , ) ( , )= 



















=

-

=

 
0 0

2 . 	 (7)

Также, если в качестве w j m( , )  выбрана взвешивающая функция, которая задает неот-
рицательную оценку спектральной плотности для одномерного временного ряда, то итого-
вая оценка ST снова будет положительно полуопределенной матрицей. В работе (Anderson, 
1971, раздел 9.2) обсуждаются разнообразные схемы выбора весовых функций и их свойст-
ва при условиях регулярности (которые будем использовать ниже). В работе (Gallant, 1985) 
рассматриваются разные весовые функции и получаются результаты, очень похожие на по-
лученные в настоящем исследовании4.

Заметим, что при фиксированных j функция w j m j m, ( ) = - 1 1  с ростом m стремится 
к единице. Поэтому можно ожидать, что оценки матрицы ST , построенные на основе сгла-
живающих выборочных автокорреляций и весов, которые стремятся к единице при росте m, 
должны быть состоятельными, если m растет с ростом размера выборки. Состоятельность 
таких оценок ST может быть показана при выполнении условий регулярности, которые схо-
жи с теми, что обсуждаются в работе (White, Domowitz, 1984), где заинтересованный чита-
тель может ознакомиться с системой обозначений и определениями, которые приняты при 
обсуждении условий перемешивания. Для матрицы A aij= , обозначим через A  норму 
max | |

,i j ija .

Теорема 2. Предположим, что:

(i) h h zt t( ) ( , ) = , где h z( , )  измерима по z для всех  и бесконечно дифференцируема 
по  в окрестности N точки *  почти наверное;

(ii) (а) существует такая измеримая функция m z( ) , что sup ( )( )N th m z  , 
sup ( )( )N th m z    и E m z Dt( )2   для любых t для некоторой константы D; (b) для неко-
торых констант D, d> 0 1, r  и для всех t выполнено условие E h Dt

r( ) d4    ;
(iii) zt — последовательность с перемешиванием либо типа (l) с показателем 2r / (2r – 1), 

либо типа a(l) с показателем 2r / (2r – 1), r>1 ;
(iv) E ht 

*  =0  для любого t, и последовательность T  - *  ограничена по веро-
ятности;

(v) весовые функции w j m( , ) , ( , , , , ,m j m=  = 1 2 1 ) ограничены, т. е. | ( , ) |w j m C  для 
некоторой константы C и  lim ( , )

m
w j m


=1  для всех j.

Тогда, если m выбирается как функция m(T ) от размера выборки так, что lim ( )
T

m T


=  
и  lim[ ( ) / ]/

T
m T T


=1 4 0, то:

	     0
1

0  











-  

=

w j m T Sj j
j

m T

T( , ( ))[ ] .
( )

P 	 (8)

4	 Работа (Gallant, 1985) попала к авторам настоящей статьи уже после того, как она была представлена к пе-
чати. 
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Доказательство Теоремы 2 дается ниже.
Предположения Теоремы 2 требуют, чтобы функции ht ( )  и  ht ( )  доминировались 

функцией от zt, которая, в свою очередь, имеет равномерно ограниченный второй момент, 
и чтобы функции ht ( )*  имели равномерно ограниченные моменты порядка чуть выше чет-
вертого. Кроме того, корреляция между наблюдениями должна убывать с заданной скоро-
стью по мере увеличения расстояния между наблюдениями. Состоятельность достигается, 
если m(t) увеличивается с ростом T, но медленнее, чем T 1/4.

Заметим, что если w (  j, m) близка к единице для каждой пары j и m, то оценка ST  в вы-
ражении (4) приводится к случаю, разобранному в работе (White, Domowitz, 1984). Содер-
жательный результат Теоремы 2 отличается от результата Теоремы 3.5 из (White, Domowitz, 
1984) в следующих двух аспектах. Во-первых, скорость роста функции m(T) в Теореме 2 го-
раздо меньше, чем T 1/3 и даже чем T 1/4. Это достигается за счет немного измененных обос-
нований по сравнению с работой (White, Domowitz, 1984), а не за счет использования об-
щего класса весовых функций. Во-вторых, полученные результаты верны и для случая со 
значительной нелинейностью в параметрах.

Также следует отметить, что причина более низкой, чем T 1/4, скорости роста функции 
m(T) зависит главным образом от использования условий перемешивания. Если ht ( )*  — 
скользящее среднее бесконечно высокого порядка с абсолютно суммируемыми коэффициен-
тами и независимыми одинаково распределенными инновациями, причем инновации имеют 
конечные моменты четвертого порядка, то доказательства Теоремы 2 и Теоремы 7.2.3 в ра-
боте (Fuller, 1976) могут быть объединены, чтобы показать, что темп роста функции m(T), 
меньший, чем T 1/2, является достаточным условием для того, чтобы оценка ST  была состоя-
тельной. С другой стороны, как отметил Lars Hansen, может быть затруднительным получе-
ние необходимого темпа роста функции m(T) в случае более слабых ограничений на зависи-
мость, чем условия перемешивания, к примеру, для стационарной, эргодической ситуации, 
рассмотренной в (Hansen, 1982).

Спецификация подходящих темпов роста для функции m(T) проливает свет на принци-
пы выбора m(T) на практике. Могут оказаться полезными методы кросс-валидации (напри-
мер, (Wahba, Wold, 1975)) и тестирования (White, Domowitz, 1984). Оценка подобных пред-
положений с помощью метода Монте-Карло или более изысканной асимптотики — одно 
из перспективных направлений для дальнейшего изучения. Также полезно было бы знать, 
могут ли методы, предложенные в работах (Cumby, Huizinga, Obstfeld, 1983) и (Eichenbaum, 
Hansen, Singleton, 1984), давать лучшие, чем ST , оценки ST в случае, если число ненулевых 
автокорреляций известно априори.
Доказательство Теоремы 2. Последовательность симметричных матриц { }AT  сходит-

ся к симметричной матрице { }A0  тогда и только тогда, когда   c A c c A cT 0  для всех векто-
ров c. Тогда, беря линейную комбинацию  | | | || | c h r c ht t , можно ограничить рассмотрение 
скалярным случаем с  r=1.

Обозначим   S h T w j m h h TT tt

T

t t jt j

T

j

m
= 

= -= =
 2

1 11
2/ ( , ) /  и  h ht t= ( ) . Для удобст-

ва обозначений будем опускать аргумент T в m(T). Из неравенства треугольника и формы 

ST  следует, что
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Четвертое слагаемое стремится к нулю при T, стремящемся к бесконечности, по Лемме 
6.17 из (White, 1984) и  limT m =.

Согласно Следствию 6.16 из (White, 1984), существует последовательность g( ) ( , , )l l=  1  

и константа D  такая, что | ( | ' ( ))E h h D jt t j-  g  для всех T  и для всех j, при этом g( )l
l


=




1

. 

Тогда | ( ) | / ( )
t j

T

t t jh h T D j
= 

-  
1

E g  для всех T и j. Так как в силу условия (v) lim ( , )T w j m =1  

для всех j, то, применяя теорему о мажорируемой сходимости к счетной мере на положи-
тельных целых числах, получаем, что третий член в (9) стремится к нулю при T, стремя-
щимся к бесконечности.

Пусть Z h h h htj t t j t t j= -- -E( ) . Из условия (ii) (b) следует, что существует константа D  

такая, что E(| | )( )Z Dtj
r2   d  для всех t и j. Доказательство Леммы 6.19 в (White, 1984) не-

корректно при такой постановке и не может быть использовано для того, чтобы доказать, 
что второй член в соотношении (9) сходится по вероятности к нулю. Однако если заменить 

(в наших обозначениях) двойную сумму 
t l

T

l j

T

== 
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11

1

 со страницы 153 в (White, 1984) суммой 

с правильными индексами 2
11
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  и применить те же рассуждения, что и при доказа-

тельстве Леммы 6.19 в (White, 1984), можно обнаружить, что существует константа D*  та-
кая, что для всех j от 0 до T и для всех T выполнено неравенство
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Из того, что величины w j m( , )  равномерно ограничены константой С, следует, что 

| ( , ) |
j

m

w j m mC
=

 
1

. Возьмем произвольное e>0  и воспользуемся неравенством треугольни-

ка, монотонностью вероятности (если A B , то Prob Prob( ) ( )A B ), тем фактом, что веро-
ятность совместного наступления нескольких событий меньше или равна суммы вероятно-
стей отдельных событий, и неравенством Чебышева. Тогда из (10) следует, что
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Тогда второй член в уравнении (9) сходится по вероятности к нулю в силу того, что m 

растет медленнее, чем T 1/4, неравенства (10) (с  j=0 ), примененного к  h h Tt t
t

T
2 2

1

- 
=

 E( ) / , 
и неравенства треугольника.

В силу (iv)   лежит в N с вероятностью, стремящейся к единице с ростом T, поэтому 
с вероятностью, стремящейся к единице, можно получить разложение среднего значения 
ST  в окрестности 

*. Пусть  h ht i= ( )  и   h ht t  = ( ), где   — среднее из этого разложения. 
Тогда с вероятностью, стремящейся к единице, первый член после знака неравенства в (9) 
может быть записан так:
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Заметим, что в силу предположения (iv) последовательность T | |* -  ограничена по 

вероятности, а последовательность m z Tt
t

T

( ) /2

1=
  ограничена по вероятности в силу нера-

венства Маркова и предположения (ii) (a). Тогда первый член в (9) сходится по вероятно-
сти к нулю, поскольку m растет медленнее, чем T 1/4 , и последовательность ( ) /2 1Cm T  
сходится к нулю.



132 Классические работы по эконометрике	 Seminal papers in econometrics

ПРИКЛАДНАЯ  ЭКОНОМЕТРИКА	 Applied  Econometrics№ 33 (1) 2014

Вывод теперь следует из соотношения (9), т. к. показано, что все слагаемые в правой час-
ти второго неравенства сходятся по вероятности к нулю.
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