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УДК 519.710.3 

 

  ИССЛЕДОВАНИЕ ПОЛНОЙ НАБЛЮДАЕМОСТИ ДИНАМИЧЕСКОЙ СИСТЕМЫ, 
МОДЕЛИРУЮЩЕЙ РАСПРОСТРАНЕНИЕ ИНФОРМАЦИИ В ОБЩЕСТВЕ 

  
М.В.  Драпалюк, С.П. Зубова, Фам Туан Кыонг, Е.В. Раецкая 

Статья посвящена построению математической модели динамической системы, описывающей распространение 
эпидемического заболевания в обществе.  Исследуется полная наблюдаемость полученной дифференциально- 
алгебраической системы.    Применяется метод каскадного расщепления исходной системы на уравнения  в 
подпространствах. Выводится формула для нахождения вектора состояний системы. Между  входной и выходной 
функциями устанавливается связь, необходимая и достаточная для реализации описываемого процесса 

Ключевые слова:   математическая модель,  нелинейная  система наблюдения  

Формирование обратной связи в системах 
автоматического управления возможно лишь после 
получения полной информации о состоянии объекта 
управления. Если все компоненты состояния 
доступны для измерения, исследователь располагает 
возможностью выбрать обратную связь, 
обеспечивающую наиболее оптимальные 
динамические свойства обследуемой системы. 
Однако, при решении практических задач, 
приходиться сталкиваться с ситуацией, когда 
измерению поддаются лишь некоторые компоненты 
вектора состояния системы или их линейные 
комбинации. В большинстве случаев это связано  с 
недостаточным количеством измерительных 
приборов в системе, а также и с невозможностью их 
монтирования  вследствие объективно возникающей 

труднодоступности измеряемых параметров . 
В связи с этим актуальна задача выявления 

возможности получения информации о векторе 
состояния по измеряемым, наблюдаемым входным, 
выходным функциям, а именно, задача наблюдения. 
Для исследования процесса распространения 
информации (новых идей) в обществе  исследуемое  

население делится на три группы так, что 1( )x t  - 

группа населения, восприимчивая к  новой 

информации, 2( )x t  - информированная группа 

населения, а 3( )x t  - группа населения, исключенная 

из первоначального числа исследуемых (по причине 
изоляции). Скорость, с которой  появляются новые 

восприимчивые к информации равна 1( )f t , а 

скорость, с которой появляются  новые  
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информированные, равна 2( )f t . Нелинейное 

слагаемое 1 2( ) ( )x t x t  отражает взаимодействие 

между группами населения. При этом 
взаимодействие между введенными параметрами 
описывается следующими соотношениями (см. [1]): 
 

1 ( ) ( )1 1 2 1

( )
( ) ( )t x t

dx t
x t x f t

dt
α β= − − +

 ,                    (1) 

2 ( ) ( )2 1 2 2

( )
( ) ( )t x t

dx t
x t x f t

dt
γ β= − + +

 ,                   (2) 

3 ( )1 2

( )
( ) x t

dx t
x t

dt
α γ= +

 .                                         (3) 
   Заметим, данная нелинейная система также может 
рассматриваться при моделировании 
распространения эпидемического заболевания в 
обществе (см. [1]). 
 Вводим дополнительную наблюдаемую 
(измеряемую)  входную функцию: 

( ) ( ) ( )1 2 3( ) t bx t cx tF t ax + +=
  ,                                  (4) 

которая отражает соотношение между тремя 

группами населения 1( )x t , 2( )x t  и 3( )x t . Заметим, 

данная функция (наблюдаемый вход), в общем 
случае, предоставляет исcледователю  лишь 
частичную информацию о компонентах состояния. 
Математическая модель исследуемой системы 
представляется в общем виде: 

( )
( ) ( , ( )) ( )

dx t
Bx t G t x t f t

dt
= + +

,                              (5) 
( ) ( )F t Ax t=  ,                                                             (6) 

где : n nB R R→ , : n sA R R→ , ( ) nx t R∈ , ( ) nf t R∈ , 

( ) sF t R∈ ,  нелинейная функция ( , ( )) nG t x t R∈ , 
[0, ]t T∈  (T - конечно или бесконечно). 

Вектор-функция ( )x t  называется вектором 

состояний системы, ( )f t  и ( )F t  входной и 
выходной функциями, соответственно. 
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Система (5), (6) называется полностью 
наблюдаемой, если по наблюдаемым входной и 
выходной функциям состояние системы в любой 
момент времени определяется однозначно. 

Таким образом, получена математическая 
модель в виде  нелинейной динамической системы 
наблюдения, отражающая в математической форме  
важнейшие свойства системы (1) - (4) и  связи, 
присущие её составным частям. 

В данной работе проводится качественный 
анализ полученной математической модели, 
представляющей собой дифференциально-  
алгебраическую  нелинейную систему (5) - (6).  Для  
исследования полной  наблюдаемости данной 
нелинейной системы применяется метод каскадного 
расщепления исходного пространства на 
подпространства и перехода к системам вполне 
аналогичным исходной, но относительно элементов  
из подпространств. Этот метод был разработан 
ранее для исследования полной управляемости и 
полной наблюдаемости линейных систем, то есть 
при ( , ( )) 0G t x t ≡  (см. [2] – [6]). Применение 

данного метода дает хорошие результаты, при 
исследовании математических моделей, представ-
ленных в работах [7] – [13]. 

В данной работе на одном из этапов 
исследования производится  упрощение 
математической модели, что позволяет 
оптимизировать  её анализ, а именно, понизить  
порядок системы уравнений, образующих модель. 

Указанный подход позволяет за конечное 
число шагов выявить полную наблюдаемость или 
ненаблюдаемость рассматриваемой системы. 
Несомненным достоинством метода является 
возможность построения функции  состояния 
полностью наблюдаемой системы в явном виде. 

В данной работе будем использовать 
следующие свойства матриц. Матрице A 
соответствуют разложения: 

,nR CoimA KerA= +&  
ImsR A CokerA= +& , (7) 

где Im A  – множество значений A  в 
nR , KerA  – 

множество решений уравнения 0Ax =  в nR , 
CoimA  – прямое дополнение к подпространству 

KerA  в 
nR , CokerА  – прямое дополнение к 

подпространству Im A  в 
sR . Через ( )P A  и 

( )Q A обозначим проекторы на подпространства 

KerB  и CokerА , соответственно, а ( ( ))I P A−  и 

( ( ))I Q А−  – проекторы на подпространства CoimA  

и Im A , соответственно; I  – единичная матрица в 
соответствующем пространстве. Разложение (7) 

таково, что сужение  A%  отображения A  на 
подпространство CoimA  осуществляет взаимно-
однозначное соответствие между 
подпространствами CoimA  и Im A .  

Введем  полуобратную матрицу: 
1( ( )).A A I Q A−− = −%

                                                                    

Уравнение (6) исходной системы эквивалентно 
системе: 

1

( ) ( ) 0, (8)

( ) ( ) ( ) , (9)

Q A F t

x t A F t x t

=
−= +




с произвольной вектор-функцией 

1( ) ( ) ( )x t P A x t KerA= ∈ . 

 В зависимости от свойств матрицы А  
возможны три случая. 

I. 0A =  .  Второе алгебраическое уравнение 
системы (5), (6) имеет вид: ( ) 0F t ≡ . Функция 

состояния  ( )x t  находится как решение 

дифференциального уравнения (5) неединственным 
образом. Система (5), (6) является  ненаблюдаемой. 

II.  {0}KerA = . Функция состояния 

( )x t определяется единственным образом по 

формуле (9) и имеет вид:  

       ( ).( ) F tx t A−=                                                   (10)    

То есть в случае инъективной матрицы A   система 
является полностью наблюдаемой. Заметим,  
исходная система (5), (6) является корректной при 

условии дифференцируемости функции ( ).F tA−
  

При подстановке выражения для ( )x t  вида (10) 

в уравнение (5), получаем уравнение связи: 

( )
( ) ( , ( )) ( ),

dA F t
F t G t A F t f t

dt
BA

−
− −+ +=             (11) 

соотношение, которому необходимо должны 
удовлетворять входная и выходная функции для 
реализации процесса, описываемого системой. 

III.   Перейдем к  более общему случаю 0A ≠  и 
{0}KerA ≠ . Подставив выражение для функции 

состояния  вида (9) в уравнение (5), получим 
выражение:  

( ) ( )

( , ( ) ( ) ( )) ( ) ( ). (12)

( )
( ) ( )

dP A x t

dt

G t P A x t A F t BA F t f t

dA F t
BP A x t

dt
−

−

−+ + + +

+ = +

 В соответствии с разложением (7), оно 
сводится к эквивалентной системе относительно 
элементов из подпространств   CoimA  и KerA :  

       

1
1 1 1 1 1

( )
( ) ( , ( )) ( )

dx t
B x t G t x t f t

dt
= + +  ,             (13) 

       1 1 1( ) ( )F t A x t=  ,                                                 (14) 

где  

1
( ) ( ) ( )x t P A x t KerA= ∈ ,      

1
( ) ( ) :B P A BP A KerA KerA= → ,

1
( ( )) ( ):A I P A BP A KerA CoimA= − → , 

1
( ) ( )( ( ) ( ))f t P A BA F t f t KerA−= + ∈ , 
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1 1 1( , ( )) ( ) ( , ( ) ( ))G t x t P A G t A F t x t KerA−= + ∈ , 

1

( )
( )

( ( ))( ( ) ( )) .

dA F t
F t

dt

I P A BA F t f t CoimA

−

−

= −

− − + ∈
 

Заметим, такой переход от исходной системы 
(5), (6) к системе (13), (14) реализуется лишь при 
выполнении  условия: 

1( ( )) ( , ( ) ( )) 0. (15)I P A G t A F t x t−− + ≡
Потребуем выполнения этого условия. 

При исследовании полной наблюдаемости 
редуцированной системы (13), (14) первого шага 
расщепления применим тот же метод, что и при 
исследовании исходной системы (5), (6). 

В силу конечномерности исходного 
пространства, за конечное, равное ( )p p n≤  

число шагов перейдем к редуцированной системе 
последнего шага каскадного расщепления: 

       

( )
( ) ( , ( )) ( ),

p
p p p p

dx t
B x t G t x t f t

dt
= + +          (16) 

       ( ) ( )p pF t A x t=  ,                                                (17) 

которая вполне аналогична исходной системе при 
условии выполнения на каждом шаге ряда условий и 
ограничений: 

     1, ,( ) ( ) 0 , pi i iQ A F t i= =                                     (18)                             

1, 1( ( )) ( , ( )) 0 , . (19)i i i pI P A G t x t i −− ≡ =

 В зависимости от свойств и вида матрицы pA , 

возможны лишь два случая. 

I. 0pA =  .  Система (16), (17) является 

ненаблюдаемой, а значит, и исходная система (5), 
(6) является ненаблюдаемой. 

II. {0}pKerA = . Функция состояния 

( )px t определяется единственным образом по 

формуле:  ( ).( ) F tp p px t A−=                                    (20)    

 Функция состояния исходной системы (5), (6) 
единственным образом восстанавливается по 

формуле: ( ) ( ).
1

( )
p

F t A F ti i
i

x t A− −∑+
=

=                   (21)  

То есть в случае инъективной матрицы pA , 

исходная система является полностью наблюдаемой 
при условии выполнения ограничений и условий 
(18), (19).   Вернемся к примеру. Здесь:  

1

2

3

( )

( ) ( )

( )

x t

x t x t

x t

 
 =  
 
 

,     

( )A a b c= ,   ( A - сюръективная матрица),  

0 0

0 0

0

B

α
γ

α γ

− 
 = − 
 
 

, 

1

2

( )

( ) ( )

0

f t

f t f t

 
 =  
 
 

, 

 

1 2

1 2

( ) ( )

( , ( )) ( ) ( ) .

0

x t x t

G t x t x t x t

β
β
− 
 =  
 
 

  

 
 
Элементы подпространства KerA  в данном 

случае можно взять в виде:  

1

2

1 2

( )

( )

( ) ( )

x t

KerA x t

a b
x t x t

c c

  
  
  

=   
  
  − −
  

, 

 с матрицей  проектора: 

1 0 0

( ) 0 1 0

0

P A

a b

c c

 
 
 

=  
 

− − 
 

.  

 
Выражение   (9) принимает вид:  

                                        

1 2 3

1

2

1 2

0

( ) 0

( ) ( ) ( )

( )

( ) .

( ) ( )

x t

a b
x t x t x t

c c

x t

x t

a b
x t x t

c c

 
 
 

= + 
 

+ + 
 

 
 
 

+  
 
 − −
 

                  (22)                

Условие (15)  имеет вид:  
a b= .                                                              (23)                                      

Матрица 0A ≠ такова, что  {0}KerA ≠ , то есть на 

первом шаге расщепления получаем случай III.  
От исходной системы (1)-(4)  с учётом условия 
разрешимости  и ограничения (23)  переходим к 
редуцированной системе первого шага:  

1 ( ) ( )1 1 2 1

( )
( ) ( )t x t

dx t
x t x f t

dt
α β= − − +  ,                   (24) 

2 ( ) ( )2 1 2 2

( )
( ) ( )t x t

dx t
x t x f t

dt
γ β= − + +  ,                 (25) 
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1 2 ( )1 2

( ) ( )
( )

a a
x t

c c

dx t dx t
x t

dt dt
α γ− − = +  ,                (26) 

( ) ( ) ( )1 2 1 2( ) ( ) ( )( ( ))t f t t xa f F t c a x tγα+ +− = −&  .   (27)           

 Дальнейшее исследование полной 
наблюдаемости вновь полученной системы можно 
производить изложенным выше методом. Однако, 
построение проекторов зачастую требует 
значительных громоздких выкладок. На практике, 
как правило, более рациональным является 
непосредственный переход к эквивалентным 
системам меньшего порядка. Так система (1)-(4) 
эквивалентными преобразованиями сводится к 
системе: 

1 ( ) ( )1 1 2 1

( )
( ) ( )t x t

dx t
x t x f t

dt
α β= − − +  ,                   (28) 

2 ( ) ( )1 1 2 2

( )
( ) ( )t x t

dx t
x t x f t

dt
γ β= − + +  ,                  (29) 

11 2 ( )1 2

( ) ( )
( )

a a dF
x t

c c c dt

dx t dx t
x t

dt dt
α γ+ += − −   ,    (30) 

1
( ) ( ) ( )3 1 2( )

a b
t F t t x

c c c
x x t= − −  .                            (31) 

Рассмотрим случай: 0a b c= ≠ ≠ . От уравнений 
(24), (25), (26) переходим  к соотношению: 

1 ( )
( ) ( ( ) ( ))1 21 2( ) dF t

x t a f t f t
c a dt

x tα γ  = − + −  
+

,         (32) 
откуда: 

( ) ( ) ( )2 1x t x t tϕ
α
γ

= − + ,                                            (33) 

с обозначением: 
1 ( )

( ) ( ( ) ( )) .1 2( )
dF t

t a f t f t
c a dt

ϕ γ
 = − + −                            (34)                        

 

  Уравнения (1), (2) принимают  вид: 

21
1 1 1

( )
( ) ( ( ) ) ( )

dx t
x t t x f t

dt

βα βϕ α
γ

= − + + ,     (35)          

21
1 1

2

( )
( ) ( ( ) ) ( )

( )
( ( ) ( ) ) ,

dx t
x t t x t

dt
d t

f t t
dt

γβ βϕ α
α

γ ϕγϕ
α

= − + −

− − −  
         (36) 

откуда получаем: 

2
1 1

1 2

( ) ( )( ( ) )
( ) ( )

( )
( ) ( ) ( ) 0.

t
x t x t

d t
f t f t t

dt

β α γ α γ βϕ α
γ α

γ ϕγϕ
α

− − +− +

 + − − = 
 

  
(37)  

Таким образом, от системы (1)-(4)  пришли к 
эквивалентной системе:  

1
( ) ( ) ( )3 1 2( )

a b
t F t t x

c c c
x x t= − −  ,                            (38) 

 
 

( ) ( ) ( )2 1x t x t tϕ
α
γ

= − + ,                                            (39) 

2
1 1

1 2

( ) ( )( ( ) )
( ) ( )

( )
( ) ( ) ( ) 0,

t
x t x t

d t
f t f t t

dt

β α γ α γ βϕ α
γ α

γ ϕγϕ
α

− − +− +

 + − − = 
 

  
(40)  

21
1 1 1

( )
( ) ( ( ) ) ( )

dx t
x t t x f t

dt

βα βϕ α
γ

= − + + .     (41) 

Если α γ= , то  входная и выходная функции 

удовлетворяют соотношению:  

1 2

( )
( ) ( ( ) ( ) ) 0

d t
f t f t t

dt

α ϕγ γϕ
γ

− − − = ,  (42) 

и исходная система является ненаблюдаемой, так 

как компонента состояния 1( )x t  находится как 

решение дифференциального уравнения (35) 
неединственным образом. 

В случае  α γ≠  при выполнении условия: 

2

1 2

( )
( ( ) )

4

( )
( ) ( ) ( )

t

d t
f t f t t

dt

α γ γ βϕ α
αβ

ϕα γ γϕ

− + =

 − − 
 

          ,  (43) 

компонента состояния 1( )x t находится из уравнения 

(37) единственным образом и имеет вид: 

1( ) ( ( ) )
2

x t t
γ βϕ β
αβ

= + .                       (44)  

Компоненты состояния 2( )x t  и 3( )x t  с учетом 

выражения (44), находятся, соответственно, по 
формулам (33), (31) и имеют вид:  

 2

1
( ) ( )

2 2
x t t

αϕ
β

= −    ,                                        (45) 

3

1 ( ) ( )
( ) ( ) ( ) .

2 2

a a
x t F t t

c c c

γ α α γϕ
α β
+ −= − +     (46) 

При подстановке выражения для 1( ),x t 2( )x t вида 

(45), (46), в уравнение (31), получим уравнение 
связи для входной и выходной функции.  
        Таким образом, в случае, когда входная и 
выходная функции удовлетворяют условию (43), а 
коэффициенты системы удовлетворяют условиям: 
  0b a c= ≠ ≠ и α γ≠ ,  

система (1)-(4) является полностью наблюдаемой, а 
компоненты функции состояния определяются по 
формулам (44), (45), (46). 
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THE   RESEARCHING OF   COMPLETE   OBSERVABILITY   OF   THE DYNAMICAL 
SYSTEM THAT MODELS THE DISTRIBUTION OF INFORMATION IN SOCIETY 

 
M.V. Drapaluk, S.P. Zubova, Pham Tuan Cuong,  E.V.Raetskaya 

The article is devoted to constructing a mathematical model of the dynamic  system  describing  the  distribution of 
information in society. The  complete  observability of the resulting differential-algebraic system is studied. The method of 
cascade splitting the original   space to  the  subspace  are used. The formula  for finding the state vector are derived. The  
relation  between input and output functions are obtained.   

Key words:    mathematical model,   nonlinear   system of observation 

 

 


