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разработки современного измерительного технического комплекса для 
вагона-лаборатории связи.  
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ИСТОЧНИК СТАБИЛИЗИРОВАННОГО НАПРЯЖЕНИЯ ДЛЯ 
ПИТАНИЯ РЕЛЬСОВЫХ ЦЕПЕЙ 

 
 
На сети дорог стран СНГ всё более широкое применение находят 

тональные рельсовые цепи (ТРЦ). Опыт эксплуатации подтверждает их 
преимущества перед низкочастотными цепями. Наряду с этим, некоторые 
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характеристики ТРЦ требуют улучшения. В частности, необходимо 
повышать помехозащищенность полупроводниковых узлов от воздействия 
мощных импульсных помех, создаваемых грозовыми разрядами, системой 
тягового электроснабжения и др.; в первую очередь со стороны источника 
питания ТРЦ; повышать коэффициент возврата путевых приёмников путем 
применения для их питания источников стабилизированного напряжения. 

Рассматриваемый в докладе стабилизатор устраняет ранее 
приведённые недостатки ТРЦ, как и РЦ других типов [1]. Стабилизатор 
разработан на базе широко применяемого преобразователя частоты ПЧ 
50/25 [2] с использованием его комплектующих изделий и представляет 
собой существенно нелинейное устройство. Технические показатели 
устройства позволяют эффективно использовать его в системах питания 
железнодорожной и промышленной автоматики. 

Стабилизатор содержит два магнитопровода (1 и 2) и размещённые 
на них входные обмотки W , W  и выходные обмотки W , W  (рисунок 1), 
причём обмотки W ,  охватывают оба магнитопровода, а их включение 
последовательное с обмоткой  образует витки намагничивания левого 
магнитопровода (W ). Обмотка W  закорочена конденсатором С 
и подключена нагрузка R (рисунок 1). В принципиальной схеме на рисунке 
1 для удобства расчётов обмотки ,  размещены отдельно на 
магнитопроводах, что не нарушает принципа рассмотрения физических 
процессов. 

1 2 3 к
1 2W

10W
1021 WW −= к

1W 2W

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Рисунок 1 - Схема включения обмоток стабилизатора ФС - РЦ 
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Отличие стабилизатора ФС – РЦ от преобразователя частоты ПЧ 
50/25, несмотря на близкое сходство электромагнитных процессов, 
заключается в физике передачи в системе “вход-выход”. В 
преобразователе в основе лежит явление параметрического резонанса, а в 
стабилизаторе - энергия на выход передаётся, главным образом, за счёт 
явления феррорезонанса. Кроме того, во входной цепи стабилизатора 
отсутствует постоянная составляющая, приводящая к нежелательному 
намагничиванию основных трансформаторов питающей сети. 

Уравнение стабилизатора имеет вид: 
 

tUm
dt

dФW
dt

dФW ωsin2211 =⋅+⋅ ,                  (1) 

 

012
=⋅+⋅ ∫ ikdt

Сdt
dФWк ,                        (2) 

 
                                           0323 =⋅+⋅ Ri

dt
dФW ,                              (3) 

 
                ,                           (4) 111311 3 WiФkФk ⋅=⋅+⋅

 
332212321 3 WiWкiWiФkФk ⋅+⋅+⋅=⋅+⋅ .           (5) 

 
Основная кривая намагничивания стали сердечников 

аппроксимируется неполным полиномом: 
  

∑ ⋅+⋅=⋅ 331 ФkФkWi , 
 

где ,  – коэффициенты аппроксимации.  1k 3k
В формулах (1) – (5)  и  – магнитный поток левого и правого 

сердечников дросселей, i1, i2, i3 – токи соответственно во входной цепи, 
контурной и нагрузке R. 

1Ф 2Ф

Из уравнений (4) и (5) находим ток: 
 

dt
dФ

RWк
WФФ

Wк
kФФ

Wк
k

Wк
KcФkФkiк 23)21(3)21(11)2311( 33 ⋅

⋅
−−⋅+−⋅+

−
⋅⋅+⋅= ,    (6) 

 

где 
1
2

W
WКс = . 
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Продифференцировав уравнение (2) и подставив в него (6), после 
преобразований получаем: 

 

0)21()21(222)2311( 33
0002

2

0
3 =−+−+⋅−+⋅+⋅ ФФФФ

dt
dФ

dt
dФФkФk λβδγα , (7) 

 

где 20
1

WкC
k
⋅

=β , 20
1

WкC
Кс
⋅
−

=α , 
RCWк

W
2

2

0
322 ⋅

=δ , 20
1

WкC
k
⋅

=β , 
RWк

W
⋅

=
3

0γ . 

 
После группирования при нулевых начальных условиях (1) имеем: 
 

t
W

UmФКсФ ω
ω

cos
1

21 ⋅−=⋅+ .                                  (8) 

 
Введём новую переменную:  
 

КсФФy ⋅−= 21 .             (9) 
 

Из (8) и (9) получаем: 
 

⎟
⎠
⎞

⎜
⎝
⎛ −⋅=

1
cos5,01
W

tUmyФ
ϖ

ω , ⎟
⎠
⎞

⎜
⎝
⎛ +⋅⋅−=

1
cos5,02
W

tUmyKcФ
ω

ω . 

 
Подставив в (7) полученные выражения для Ф1 и Ф2 и 

преобразований, приходим к выражению: 
 

0sin2coscoscos2 0
223

002

2

=+Ω⋅+++⋅+++ tytytyyt
dt
dy

dt
yd ωδωμωνγωαγ . 

 

Введём в последнее выражение  величину 
Фm

yx =  (Ф – поток 

насыщения), собственную частоту 

m

Ω 2 и время системы tΩ=τ  и приведём 
его к нормированному виду: 

 
 

⎟
⎠
⎞
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⎝
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⎠
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⎠
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,            (10) 
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где 
11

2
0 Wk

Umδδ = , 2
0

0 Ω⋅
⋅=
Фm

δαψ , 
Kc

Um
Ω
⋅=Π δ2 , 2)21(

Ω
⋅+=
ФmEEγ ;  

 

2)21(
1

3
Ω

⋅+⋅=
ФmEE

W
Um
ω

ν , 222

2

12
)21(3

Ω
−

=
W

EEUm
ω

μ , ( )00 325,02 λα +⋅⋅= kKcE ; 

22
1

Kc
E

⋅
=

λ , 233

3
0 1

14
)21(3

11
)1(

Ω
⋅

⎭
⎬
⎫

⎩
⎨
⎧ +

+⎥⎦
⎤

⎢⎣
⎡ −

−
⋅=

ФmW
EEUm

WW
KcKcUm

ω
ω

ω
βα ; 

 

  
2

1 ⎟
⎠
⎞

⎜
⎝
⎛
Ω

−=Δ
ω - расстройка контура. 

Для решения (10) применим асимптотический метод Крылова – 
Боголюбова [3]. Для стационарного режима работы стабилизатора этот 
метод позволяет в первом приближении получить систему 
трансцендентных уравнений и определить амплитуду и фазу первой 
гармоники искомой переменной. Рассмотрим основные режимы работы 
устройства питания. 

Стационарный режим холостого хода ФС – РЦ. Решение (10) 
будем искать в виде: 

 

ψsin⋅= ax , Θ+
Ω
⋅

=
τϖψ , ),( Θ⋅= aA

d
dа ε
τ

, ),( Θ⋅= aB
d
dа ε
τ

,                    (11) 

 
где ),( Θ⋅ aAε , ),( Θ⋅ aBε  пока неизвестные функции; ε  – безразмерный 

малый параметр. 
Подставим (11) в (10) и, учитывая только члены при ε  в первой 

степени, запишем первую часть (10) в виде: 
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⎟
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⎜
⎜
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4
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cossin

sin
4
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24
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2
sin

cos
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2
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aaa

a
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xf

ννμωτ

αν

ννμ
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ετε .     (12) 

 
Левая часть (8) приобретает такой вид: 
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⎜
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Θ
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⎠
⎞

⎜
⎝
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Ω

⋅+
ωτωω

ωτωω

εω
τ

sincos2sin2

cossin2cos22

2

2

BA

BaA
x

d
xd  .        (13) 

 
Приравнивая в (12) и (13) синусные и косинусные составляющие 

получим: 
 

0cos2sin5,0cossin
0sin2cos5,0sincos

0

0

=Θ−Θ−Θ−Θ−
=−Θ−Θ+Θ−Θ

khBmAm
khBmAm

εε
ϑεε  .     (14) 

 
В уравнении (14) приняты такие обозначения: 

 

Ω
=

ω2m , amm ⋅=0 , h+= αϑ , 0hqnk ++= , an μ5,0= , , ,  ν25,0 ah = ν375,0 aq =

 
0hа =⋅Δ . 

 
 Решая систему (14) относительно A⋅ε  и B⋅ε  находим: 
 

 

0

sin)5,0(2cos
cos

25,05,02cos)25,05,0(sin5,1

m
hkkB

m
hhkA

Θ+−Θ+
=⋅

Θ⋅
−+Θ−+Θ

=⋅

ϑε

ϑϑε
  .              (15) 

 
В стационарном режиме 0=

Θ
=

ττ d
d

d
dа  и решение системы (15) даёт 

результат 
k5,1

2cossin Θ+
−=Θ
ξ ; 12cos −=Θ . Искомая амплитуда колебаний 

имеет вид: 
 

033,1666,02 =
Δ+

⋅+⋅−
ν

μaa .            (16) 
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Рисунок 2 - Пороговая характеристика стабилизатора ФС - РЦ 

 
Оказалось, что фаза выходных колебаний –90 0 и определяется 

условиями для . Прибавка к Θ2 π22 +Θ  не влияет на тригонометрические 
функции, что значит возможность колебаний с противоположным знаком 
+90 0. Этот результат хорошо подтверждается экспериментальными 
исследованиями макетного образца стабилизатора. 

По уравнению (16) построена пороговая характеристика устройства – 
зависимость выходного напряжения от входного (рисунок 2). 
Практический интерес представляет анализ (16) при изменении 
коэффициента несимметрии . Зависимости Uвых(Uвх) для двух 
значений  показывают, что с ростом  стабильность выходного 
напряжения существенно повышается. Коэффициент стабилизации при 
этом может достигать 80. 

Kc
Kc Kc

Нагрузочный режим работы стабилизатора. Уравнение (10) 
решено упомянутым выше методом с использованием аналогичного 
алгоритма при подключении нагрузки к обмотке  (см. рисунок 1). В 
результате получено уравнение третьего порядка, устанавливающее связь 
амплитуды выходных колебаний от параметров устройства. 

3W

 
0212

0
3 =+⋅−⋅+ rarara ,                                             (17) 

 

где ⎟
⎠
⎞

⎜
⎝
⎛

Ω
⋅Π+

Ω
⋅−=

ωων 75,1437,0875,10 mr ,  
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Ω
⋅=
ωαμ1r ;  

⎟
⎠
⎞

⎜
⎝
⎛

Ω
⋅Π++⋅=
ωμ 5,025,175,12 mr . 

Уравнение (17), как оказалось, имеет один действительный и два 
мнимых корня. Подстановка в уравнение параметров макетного 
стабилизатора: 

 
1901 =W , , 500=Wк 803 =W , 001,0=V  м3, C=50 мкФ, ,  610346,31 ⋅=k

33
12101603

CB
Ak ⋅⋅= , , 3602 =W 36,0=l  м,  м2, , 31036,1 ⋅=S BCФм ⋅⋅= −31017,2

 
позволила построить пороговою характеристику стабилизатора при 
нагрузке 200 Вт (см. рисунок 2). Выходная мощность образца 
рассчитывалась по формуле: 210

15,1
=

⋅
=

T
VBHP  Вт, где 02,0=T с – период 50 

Гц. Величины напряжённости поля 3000H = А/м и индукции  Тл 
выбраны опытным путём. Приведение данных расчёта к действительному 
напряжению выполнено по известному соотношению Uвых , 
где  принято 1,8 Тл. Из кривой 

3,1=B

aBmSWк44,4=
Bm 42 ÷=Kc  видно, что при нагрузке 200 Вт 

выходное напряжение отличается высокой стабильностью в широком 
диапазоне изменения питающего напряжения. При подключении нагрузки 
кривые Uвых(Uвх) смещаются вправо. Изменением параметров, в 
частности, коэффициента , ёмкости контура и др., можно установить 
требуемую рабочую зону устройства.  

Kc

Выводы. Внешняя характеристика стабилизатора (рисунок 3) 
достаточно жёсткая: при нагрузке до 200 Вт и в номинальном напряжении 
сети 230 В снижение выходного напряжения не превышает 2 – 3 %, 
коэффициент стабилизации 40, к. п. д. достигает 0,6 – 0,65, 6,0cos =ϕ . 
Расчёты показывают, что при питании ТРЦ от стабилизатора коэффициент 
надёжного возврата приёмника может быть увеличен на 20 – 30 %. 

 Нагрузочная характеристика Iвх(Iн) при нагрузке до 200 Вт носит 
практически линейный характер при входном токе от 0,6 до 3 А, что 
свидетельствует о высокой стабильности выходного напряжения и малом 
внутреннем сопротивлении стабилизатора. Качество выходного 
напряжения вполне удовлетворительное, с ростом нагрузки форма 
напряжения ещё в большей степени приближается к синусоидальной. 
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Рисунок 3 - Внешняя характеристика стабилизатора ФС – РЦ 
 

Анализ спектра выходного напряжения стабилизатора потери 0ξ  при 
наихудших сочетаниях напряжения питания (min) и нагрузки (max) 
коэффициент нелинейных искажений не превышает 0,01, а наибольшая 
третья гармоника – 9 %. 
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