
РЕШЕНИЕ УРАВНЕНИЙ ЭЙЛЕРА, ОПИСЫВАЮЩИХ 
ДВИЖЕНИЕ ТЯЖЕЛОГО ТВЕРДОГО ТЕЛА ОКОЛО 

НЕПОДВИЖНОЙ ТОЧКИ, В ОБЩЕМ СЛУЧАЕ 
К.В. Мануйлов, А.А. Курбатов 

 
 Решение задачи о движении тяжелого твердого тела около неподвижной точки в 

общем случае является чрезвычайно важным для построения аналитического описания 
трудно обозримого множества различных динамических систем, начиная от движения 
корабля на волнении [1] и кончая движением систем с большим числом степеней 
свободы. Кроме того, полные уравнения движения, описывающие поведение угловых 
скоростей, дают возможность построить решения практически всех нестационарных 
уравнений математической физики [2]. 

 Однако, несмотря на создание теории абелевых функций, содержащей все 
необходимое для ее решения – вплоть до выражения в известных функциях уравнений 
Эйлера, это движение описывающих (впервые, хотя не до конца, в 1879 г. Г. Вебер [3]), 
она считается до сих пор неразрешимой в квадратурах, по всей видимости, всеми, 
кроме авторов настоящей статьи [4–8]. Между тем функции, в которых выражаются 
кинематические параметры, описывающие движение тяжелого твердого тела около 
неподвижной точки – угловые скорости ii ωω ,  и направляющие косинусы αij, 
являющиеся решениями уравнений Эйлера  

 
AiDωi + (Ak – Aj)ωjωk = Fg(xj0α3k – xk0α3j) ,                                     (1)(a) 
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AiD iω + (Ak – Aj) kj ωω  = Fg(xj0αk 3– xk0αj3) ,                                (1')(a) 
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где    Ai – моменты инерции, ωi и iω  – угловые скорости относительно движущихся и 
неподвижных осей, αij – направляющие косинусы, xi0 – координаты центра тяжести, Fg 
– сила тяжести, были полностью определены в результате алгебраического анализа 
уравнений (1), проведенного С.В. Ковалевской [11–13]. Действительно, из полученного 
ею в результате приравнивания нулю детерминанта, образованного из системы (1), 
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следует, что решения уравнений (1) и (1') суть тригонометрические функции 
алгебраической кривой рода два, определенные отношениями шести нечетных и девяти 
четных тэта-функций второго порядка от двух переменных к тэта-функции второго 
порядка, являющейся единицей группы из шестнадцати тэта-функций первого порядка 
с характеристиками, независимыми от конкретных значений коэффициентов в 
уравнениях (1) и (1') (или (3)), что не учла С.В. Ковалевская (см. [10–14]). 

Угловые скорости, определенные относительно движущихся осей, суть 
отношения вида 
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угловые скорости, определенные относительно неподвижных осей, суть отношения 
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а направляющие косинусы αij суть отношения 
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Функции (4), (4'), (5) естественно входят в выражения интегралов движения – 
шести классических 
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из которых (6.1)(b) получается стандартным приемом. Домножим каждое из уравнений 
Эйлера (1)(a) на и сложим их, что даст iiA ω
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Переопределим угловые скорости, положив iii A ω=ω~ . Тогда равенство (6.4) 
приобретет вид 
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Интегрируя, получаем 
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где  суть постоянные, имеющие размерность момента инерции, определенные 
отношениями (см. [11, 12]) 
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Интегралами движения также являются поверхность K2
4, имеющая четвертый 

порядок по ωi (αij), характеристическая поверхность, являющаяся поверхностью 
Римана рода 2 шестого порядка K2

6, и многообразие Якоби J2
8 – восьмого порядка. 

Построим дифференциальные уравнения Эйлера посредством прямого 
дифференцирования функций (4)–(5). 

Производные от отношений четных тэта-функций второго порядка (5) имеют вид 
[3, 11] 
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где  , а производные от отношений нечетных тэта-функций второго порядка 
имеют вид 
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а для общей системы сил, действующих на движущееся твердое тело [11]: 
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Однако уравнения (7)–(9) суть не уравнения Эйлера, описывающие движение 
тяжелого твердого тела около неподвижной точки, но лишь алгебраические выражения 
производных от четных и нечетных тригонометрических функций алгебраической кривой 
рода 2, эквивалентные деривационным уравнениям, описывающим движение репера, 
сопровождающего замкнутую кривую, лежащую на поверхности Куммера K2

4 (см. [2, 15]), 
из коих совпадают по виду с уравнениями Эйлера (1)(b), (1')(b) уравнения (7). 

Для преобразования их в уравнения, описывающие движения тяжелого твердого 
тела около неподвижной точки, необходимо переопределить постоянные ijkijk ββ , , а 
именно, положить 
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где ,   kjj xb 30 α⋅= 30 kjj xb α⋅= , 2
ТЗR

mM
γ−  – периодически изменяющаяся сила 

тяжести. Тогда правые части уравнений (8) и (9) станут эквивалентны правым частям 
уравнений (1)(a) и (1')(a) (отметим, что уравнения (9) переводится в уравнения (8) 
поворотом системы координат). Такое переопределение приводит нас к заключению, 
что кинематические параметры являются периодическими функциями четырех  
переменных, ибо периодическое изменение силы тяжести преобразует модули κi, 
входящие в абелевы интегралы I рода ранга 2, определяющие периоды функций (4)–(5), 
вместе с периодами в периодически изменяющиеся величины, т.е. уравнения (1)(a) и 
(1')(a) являются уравнениями с периодически изменяющимися коэффициентами 
(отметим, что из этого переопределения следует неразрешимость уравнений (1)(a) и 
(1')(a) при постоянной силе тяжести). Но тогда, строго говоря, для построения 
уравнений Эйлера посредством дифференцирования кинематических параметров мы 
должны брать от них полные производные по времени, т.е. по переменным ui, κi, из 
коих последние выражаются через начальные условия: 
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Следовательно, как уравнения движения тяжелого твердого тела около 
неподвижной точки, так и уравнения движения тяжелого твердого тела с трением в 
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точке опоры  и уравнения движения тяжелого деформируемого тела мы получим, взяв 
производные от кинематических параметров по ui, κi:  
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где              
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а Kij суть полные абелевы интегралы I рода ранга два (см. [16]): 
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(14) 

 
где логарифмические производные от тэта-функций и третьи слагаемые, стоящие в 
фигурных скобках, суть функции квазипериодические.  
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Все постоянные, входящие в функции ωi и αij и интегралы рода I ранга 2, 
определяющие их периоды, выражаются через кинематические и динамические 
начальные условия. 

Таким образом, движение твердого тела, описываемое уравнениями (1)(a) и (1')(a) 
или (13) и (14) при условии существования эйлеровой жесткости, будет периодическим, 
т.е. будут периодическими функциями времени и все слагаемые, стоящие в фигурных 
скобках, суммируемых по индексам 1 и 3, ввиду постоянства моментов инерции Аi (см. 
(12)). При наличии же трения в точке опоры или при условии, что тело будет реально 
конечно деформируемым, его движение будет описываться уравнениями (13), (14)  и 
будет затухающим. 

Ввиду изменения модулей κi и периодов функций (4)–(5) все интегралы 
движения, кроме (6.3), будут представлять собою величины, изменяющиеся во 
времени. Для образования из них постоянных величин необходимо рассмотреть еще 
одно твердое тело, таким образом двигающееся около неподвижной точки, чтобы 
величины (6)(a–d) изменялись бы в противофазе с первыми, тогда их суммы будут 
строго постоянными. 

Кинематические параметры движения могут быть представлены в виде 
произведений не более чем двух эллиптических функций Якоби от двух различных 
аргументов и экспоненциальных функций (см. [12, 17–19]), периоды которых 
отличаются от периодов функций (4)–(5). 

Если эллипсоид инерции тела является сферическим, т.е. A1 = A2 = nA3, то 
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как и в случаях  Лагранжа,  Ковалевской,  Горячева–Чаплыгина etc., то кинематические 
параметры при 1 ввиду обращения в нуль коэффициента a2

2 =κ 12 квадратичной формы, 
входящей в тэта-функцию от двух переменных, будут представлены произведениями 
двух отношений эллиптических тэта-функций второго порядка, т.е. произведениями 
эллиптических функций Якоби от двух переменных 
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             (15) 

(ср. (15)); часть же кинематических параметров при 0  ввиду обращения в нуль 
коэффициентов a

2
2 =κ

12 и a22 квадратичной формы, входящей в тэта-функции, будет 
представлена произведениями эллиптических функций Якоби на экспоненты, а часть 
— одними экспоненциальными функциями. 

Так как уравнения (13), (14) описывают движение тяжелого твердого тела около 
неподвижной точки, происходящее под действием периодически изменяющейся 
внешней силы Fg, то они же описывают движение этого тела при условии, что его 
центр тяжести движется около неподвижной точки по замкнутой пространственной 
кривой, лежащей на некоторой алгебраической (механической) поверхности, из чего 
следует, что кинематические параметры (4), (4') и (5) дают точное аналитическое 
описание движения корабля на волнении (см. [1, 20]). 

Но, следовательно, они же дают и точное аналитическое описание качения 
тяжелого твердого тела, ограниченного выпуклой алгебраической поверхностью 

SN(x,y,z) = 0 ,                                                          (16) 
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по плоскости (обобщение движения Пуансо – см. [21]), при котором нуль-центр 
инерции вращающих сил описывает кривую, лежащую на одной из эволютных 
поверхностей поверхности (16), а угловые скорости ωi, как нетрудно заключить из 
системы 
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(17) 
представляют собой решения уравнений Эйлера – Стокса, описывающих движение 
вязкой сжимаемой жидкости, вызванное поступательные движением в ней твердого 
тела, ограниченного поверхностью (16). 

Для построения естественного полного описания движения сплошной среды – 
реальной жидкости, обтекающей движущееся в ней твердое тело, ограниченное 
поверхностью (16), необходимо и достаточно, приняв поверхность (16) за абсолютную 
поверхность, порождающую соответствующую проективную геометрию, а потому 
неподвижную (см. [22]), определить движения сплошной среды (пространства), 
оставляющие ее на месте, вращениями относительно двух систем осей и построить 
описывающие эти вращения уравнения Эйлера – Стокса и волновые уравнения 
посредством вычисления первой и второй субстанциональных производных от 
составляющих вектора линейной скорости жидкости, определенных равенствами 

jkkjx xx
i

ω−ω=υ  ,                                                          (18) 

где  ωj, ωk суть решения уравнений (13), (14),  xj, xk – координаты точки, лежащей на 
поверхности (16). 
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