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Аннотация. Предложен метод расчета операционных усилителей на основе 
использования топологических графов, что позволяет резко сократить объем 
вычислений за счет перехода от принципиальных электрических схем узлов 
средств измерений непосредственно к графам и к функциям преобразования. 
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Abstract. The article introduces a method of calculating operational amplifiers based 
on the use of topological graphs. Application of the method allows to drastically re-
duce the amount of computation due to transition from principal electrical circuit units 
of measurement tools directly to graphs and functions of the transformation.  

Key words: operational amplifier, topological graph, gain, source, drain. 

Введение 

Расчет узлов средств измерений на операционных усилителях (ОУ)  
с реальными характеристиками связан с решением систем уравнений высоко-
го порядка. Электрической схемой замещения ОУ является трехполюсник, 
который описывается системой трех уравнений. Измерительный усилитель, 
использующий три ОУ, описывается системой девяти уравнений, и ее реше-
ние представляет весьма сложную задачу. Использование топологических 
графов позволяет во много раз упростить решение данных задач при перехо-
де от принципиальной электрической схемы непосредственно к топологиче-
скому графу, на основании которого можно получить функцию передачи 
усилителя, его входное и выходное сопротивления. 

1. Применение формулы Мезона для определения  
значения коэффициента передачи инвертирующего ОУ 

На рис. 1,а представлена электрическая схема инвертирующего ОУ,  
а на рис. 1,б – соответствующий топологический граф, который является гра-
фическим изображением системы линейных уравнений (1). 

Топологический граф содержит исток – источник входного напряжения 
Uвх, зависимые узлы 1 и 2, соответствующие напряжениям на инвертирую-
щем e– и неинвертирующем e+ входах ОУ и сток – узел 3. Потенциалу стока 
соответствует напряжение на выходе усилителя Uвых. 

Работа инвертирующего усилителя описывается соотношениями:  

 

1
вх 22

1 1 1
вх 1 11 вх 11 вых 2 11

вых

( ) ;

( ) ( ) ( ) ;

,

e e g g

e U g g e g g U g g

U ke ke

  

    

 

 
   


  

  (1) 



Известия высших учебных заведений. Поволжский регион 

 
140

где g11 и g22 – собственные проводимости узлов 1 и 2, равные сумме проводи-
мостей всех ветвей, сходящихся соответственно в этих узлах: 

g11 = g1 + g2 + gвх; g22 = g3 + gвх,  

причем проводимость gi = (Ri)
–1 при i = 1, 2, 3; k – коэффициент усиления ОУ.  
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Рис. 1. Схема и топологический граф операционного усилителя: 
R1, R2, R3 – навесные резисторы; rвх – дифференциальное входное  

сопротивление ОУ; k – реальное значение коэффициента усиления ОУ;  
Uвх, Uвых – напряжения на входе и выходе ОУ соответственно 

 
Первые два уравнения системы составлены по законам Кирхгофа в со-

ответствии с методом узловых потенциалов. Третьему уравнению соответ-
ствуют односторонние передачи входных сигналов е+ и е– дифференциально-
го усилителя на его выход. 

Коэффициент передачи реального ОУ определим по топологическому 
графу (рис. 1,б) с учетом реальных значений входного сопротивления ОУ – 
rвх и коэффициента усиления дифференциального входного сигнала k: 
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где P1 и P2 – пути от истока Uвх к стоку Uвых; 1 и 2 – алгебраические допол-
нения соответствующих путей;  = 1 – (L1 + L2 + L3) – определитель данного 
графа.  

В топологическом графе коэффициенты передачи двухузловых конту-
ров L1, L2 и трехузлового контура L3 равны произведениям коэффициентов 
передач входящих в них ветвей: 
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Коэффициенты передач путей Р1 и Р2 равны [1] 
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а алгебраические дополнения коэффициентов передач путей 1 2 1    , так 

как в топологическом графе нет контуров, не касающихся путей Р1 и Р2. 
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Подставляя в (2) выражения для коэффициентов передачи путей и кон-
туров, получим коэффициент передачи реального ОУ: 
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Подставляя в (3) выражения для коэффициентов передачи g11 и g22, по-
сле преобразований получим значение коэффициента передачи реального ОУ: 
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Для идеального инвертирующего ОУ с учетом того, что ,k   

вх 0g  , после упрощений получим 
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2. Применение формулы Мезона для определения значения  
коэффициента передачи неинвертирующего ОУ 

На рис. 2,а представлен неинвертирующий операционный усилитель 
ОУ, а на рис. 2,б – соответствующий ему топологический граф. 
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Рис. 2. Схема и граф неинвертирующего операционного усилителя 
 
Топологическому графу соответствует система линейных уравнений: 

 

вх 2
вых

11 11

3вх
вх

22 22

вых

;

;

.

g g
e e U

g g

gg
e e U

g g

U ke ke

 

 

 

  



 

   


  (6) 

Из топологического графа (рис. 2,б) определим коэффициент передачи 
реального неинвертирующего ОУ: 
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здесь 1 = 2 = 1, а определитель данного графа  = 1 – (L1 + L2 + L3), где ко-
эффициенты передач контуров равны: 
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Для идеального неинвертирующего ОУ с учетом того, что 

вх, 0k g   после ряда упрощений получим [2] 
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При необходимости большого усиления инвертирующего и неинверти-
рующего усилителей в цепи обратной связи используются резисторы с высо-
ким значением номиналов. Это приводит к увеличению влияния помех и 
наводок. Данный недостаток можно исключить использованием инвертиру-
ющих или неинвертирующих ОУ с Т-образной обратной связью.  

3. Применение формулы Мезона для определения значения  
коэффициента передачи неинвертирующего  

и инвертирующего ОУ с Т-образной обратной связью 

На рис. 3 представлены неинвертирующий ОУ с Т-образной обратной 
связью и его топологический граф соответственно. 
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Рис. 3. Неинвертирующий операционный усилитель с Т-образной  
обратной связью и его граф: g11, g22, g33 – собственные проводимости  

узлов 1, 2, 3, значения которых равны g11 = g1 + g2 + gвх;  
g22 = g5 + gвх; g33 = g2 + g3 + g4, проводимость gi = (Ri)

–1 
 
Из рис. 3,б получим следующую формулу Мэзона [1] для топологиче-

ского графа: 
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Здесь 1 = 1 – L4, 2 = 1. Определитель топологического графа будет 
равен  = 1  1 2 3 4L L L L    , где коэффициенты передачи четырехузлово-
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передач путей, алгебраических дополнений и контуров в (9), получим вы-
ражение для коэффициента передачи реального неинвертирующего ОУ  
с Т-образной обратной связью:  
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Для идеального неинвертирующего усилителя, полагая, что ,k   

вх 0g  , после ряда упрощений получим [2]: 
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На рис. 4 представлены инвертирующий ОУ с Т-образной обратной 
связью и его топологический граф соответственно. 
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Рис. 4. Инвертирующий ОУ с Т-образной обратной связью и его граф 
 
Определим реальный и идеальный коэффициенты передачи инверти-

рующего ОУ с Т-образной обратной связью (рис. 4). Исходя из топологиче-
ского графа ОУ (рис. 4,б), получим реальный коэффициент передачи: 
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где P1, P2 – коэффициенты передачи путей, алгебраические дополнения кото-
рых 1, 2 и 1 = 2 = 1, так как отсутствуют контуры, не касающиеся данных 
путей.  

Для идеального инвертирующего усилителя, полагая, что ,k   

вх 0g  , получим 
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4. Анализ погрешностей коэффициента передачи ОУ 

Важнейшим параметром средства измерения (СИ) является его переда-
точная функция. Она выражается через параметры основных узлов СИ как 
отношение выходной величины к входной. Используя теорию сигнальных 
графов, можно формализовать и упростить процедуру получения функции 
преобразования и анализа погрешностей СИ [2]. Передаточная функция ха-
рактеризуется как передача графа G = f (gi), где G – коэффициент передачи 
графа; gi – коэффициент передачи i-й ветви графа (i = 1, 2, 3, ...), f – функция 
преобразования [1].  

Определим влияние нестабильности i-й ветви графа на нестабильность 
коэффициента передачи графа: 

 i i i
gi gi i

i i

g g gG G
G S g

g G g G gi
      

 
, (14) 

где Sgi – весовой коэффициент i-й ветви, показывающий, с каким весом учи-
тывается ее относительная погрешность в общей погрешности передачи гра-
фа G. 

Так как относительная погрешность коэффициента передачи i-й ветви 
графа ig , то весовой коэффициент погрешности передачи ветви равен 

 i
gi

i

gG
S

g G




.  (15) 

Для блоков и узлов средств измерений уравнение связи параметров 
имеет вид дробно-линейной функции  

 G = (agi + b) (cgi + d)–1. (16) 

Проделав необходимые преобразования над уравнением связи парамет-
ров в соответствии с выражением (14), получим выражения Sgi для дробно-
линейной функции передачи графа: 

 Sgi = (ad – bc) gi [(agi + b) (cgi + d)]–1.  (17) 

Из общего выражения для весового коэффициента погрешности пере-
дачи ig -ветви графа получим значения для часто встречающихся частных 

случаев, получаемых при равенстве нулю одного из коэффициентов в переда-
че графа (17): 

– если a = 0, то G = b(cgi + d)–1, а Sgi = –(1 + d/cgi)
–1;  (18) 
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– если b = 0, то G = agi(cgi + d)–1, а Sgi = (1 + cgi/d)–1; (19) 

– если c = 0, то G = (agi + b)(d)–1 , а Sgi = (1 + b/agi)
–1; (20) 

– если d = 0, то G = (agi + b)(cgi)
–1 , а Sgi = –(1 + agi/b)–1;  (21) 

– если b = 0 и d = 0, то Sgi = 1; (22) 

– если а = 0 и с = 0, то Sgi = –1. (23) 

Использование формулы Мэзона резко упрощает процедуру нахожде-
ния функции передачи графа. Данная методика универсальна в смысле при-
менения системного подхода, т.е. последовательного ее применения к ин-
формационно-измерительным системам и комплексам, к структурам средств 
измерений, к блокам и узлам этих структур и, наконец, к отдельным элемен-
там блоков и узлов. Удобным в расчетах является использование расширен-
ных графов. В них узлы, являющиеся независимыми источниками входного, 
опорного, компенсирующего или пилообразного напряжений, напряжения 
смещения представляются ветвями расширенного графа. Так как они входят  
в коэффициент передачи графа, то их нестабильности влияют на его неста-
бильность. Данное обстоятельство позволяет выделить аддитивную погреш-
ность как нестабильность независимых источников и мультипликативную 
составляющую общей погрешности измерения как нестабильности коэффи-
циентов передачи отдельных ветвей расширенного графа. 

Для этого введем в расширенный граф единичный узел, потенциал или 
ток которого равен единичному значению соответствующего параметра. Этот 
узел будет общим узлом всех независимых источников, а значения выходных 
параметров источников будут коэффициентами передач ветвей, исходящих из 
единичного узла.  

В качестве примера рассмотрим применение данной методики к анали-
зу погрешностей блоков и узлов СИ на основе ОУ, например, для анализа по-
грешностей коэффициента передачи инвертирующего усилителя (рис. 2,а). 
Реальный коэффициент передачи его в соответствии с выражением (4) имеет 
следующий вид:  

 1 3
иу(реал)

2 3 1 2 3 вх 1 2 3( ) ( )

kg g
G

kg g g g g g g g g




    
.  (24) 

Здесь знаменатель выражения (24) является определителем Δ графа, а 
сам граф представляет собой частный случай дробно-линейной функции. 

Так как все параметры входят в выражение (24) в первой степени, то 
оно представляют собой дробно-линейную функцию. Весовые коэффициенты 
погрешностей Sgi определяются частными случаями (18) и (19). Тогда выра-
жения для весовых коэффициентов отдельных частных составляющих по-
грешности реального коэффициента передачи инвертирующего ОУ будут 
иметь следующий вид: 

   Sg1 = –[1 + (g1gвх + g1g3)(kg2g3 + g2gвх + g3gвх + g2g3)
–1]–1;  (25) 

 Sg2 = [1 + (kg2g3 + g2gвх + g2g3)(g1g3 + g1gвх + g3gвх)
–1]–1;  (26) 

  Sgвх = –[1 + [(g1 + g2 + g3)gвх[kg2g3 + (g1 + g2)g3]
–1]–1.;  (27) 

  Sgk = –[1 + kg2g3 [(g1 + g2 + g3)gвх + (g1 + g2)g3]
–1

 ]
–1; (28) 
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 Sg3 = [1 + (g1gвх + g1g3)(g2g3 + g2gвх + g3gвх)
–1]–1.  (29) 

Так как значения проводимостей ветвей графа gi меньше единицы, а 
значение коэффициента передачи ОУ больше тысячи, то весовой коэффици-
ент погрешности Sgi может иметь как очень малое значение, так и значение, 
близкое к единице. Значение весового коэффициента погрешности Sgi опре-
деляется положением коэффициента передачи операционного усилителя k  
(в числителе или знаменателе). Когда значение весового коэффициента погреш-
ности Sgi близко к единице, требования к параметрам схем наиболее высокие. 

Заключение 

Использование топологических графов позволяет получить выражения 
для коэффициентов передач ОУ без составления систем уравнений и их реше-
ния. Это приводит к резкому сокращению времени на проведение расчетов.  

Использование топологических графов позволяет во много раз упро-
стить решение данных задач за счет непосредственного перехода от принци-
пиальной электрической схемы к топологическому графу, на основании ко-
торого можно получить функцию передачи усилителя и произвести анализ 
погрешности измерений. 
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