
Известия ТулГУ. Технические науки. 2010. Вып. 2. Ч. 2

 172

мость монтажных работ с учетом существующих несущих конструкций на
и вне охраняемой территории, величина эксплуатационных расходов и т.п.

Сама оптимизационная задача является структурно-
параметрической. Ввиду сложности для ее решения рекомендуется чис-
ленный метод.

Список литературы

1. Цыпкин А.Г., Цыпкин Г.Г. Математические формулы. М.: Наука,
1985. 127 с.

2. Johnson J. Analysis of image forming systems // Image Intensifier
Symposium. AD 220160 (Warfare Electrical Engineering Department, U.S.
Army Research and Development Laboratories). Ft. Belvoir. Va., 1958.
P. 244 –273.

3. Аттетков А.В., Галкин С.В., Зарубин В.С. Методы оптимизации
М.: Изд-во МГТУ им. Н.Э. Баумана, 2003. 339 с.

M. Tyuchanov
Evaluation of a watched territory squire in a distributed video system
The task of evaluation of a watched territory squire for the case of arbitrary posi-

tioning of TV-s and intersection of observation sectors is solved. The task of optimal distribu-
tion of chambers on a territory is formulated.

Keywords: TV-chamber, base co-ordinate system, linked co-ordinate system, obser-
vation sector squire, intersection structure-parametric optimization, optimization criterion.

Получено 07.04.10

УДК 004.4:414
А.П. Колосов, асп., 9202741745,
alexey.kolosoff@gmail.com (Россия, Тула, ТулГУ)

МЕТОДЫ ОТЛАДКИ ПАРАЛЛЕЛЬНЫХ ПРОГРАММ

Рассматриваются проблемы повышения качества параллельных программ, а
также особенности, затрудняющие их отладку. Выполнен обзор четырех методов
такой отладки: традиционная отладка, отладка на основе событий, динамический
анализ и статический анализ. Приведена классификация ошибок специфических для
параллельного программирования.

Ключевые слова: параллельное программирование, отладка, статический ана-
лиз, сети Петри.

Введение
Параллельное программирование появилось достаточно давно.

Первый многопроцессорный компьютер был создан еще в 60-х годах про-
шлого века. Однако до недавних пор в персональных компьютерах при-

Управление, вычислительная техника и информационные технологии

 173

рост производительности процессоров обеспечивался в основном благода-
ря росту тактовой частоты, и многопроцессорные персональные компью-
теры были редкостью. Сейчас рост тактовой частоты в персональных ком-
пьютерах замедляется, и прирост производительности обеспечивается за
счет использования нескольких ядер. В связи с этим задача написания па-
раллельных программ приобретает все большую и большую актуальность.
Если ранее для увеличения производительности программы пользователь
мог просто установить процессор с большей тактовой частотой, то теперь
такой подход невозможен, и существенное увеличение производительно-
сти в любом случае потребует усилий от программиста.

В связи с тем, что параллельное программирование для персональ-
ных компьютеров начинает набирать популярность только сейчас, процесс
распараллеливания существующего приложения или написания нового па-
раллельного кода может вызвать проблемы даже для опытных программи-
стов, так как данная область является для них новой.

По оценкам компании «Evans Data», проводящей опросы среди раз-
работчиков ПО, на сегодняшний день общее количество программистов в
мире составляет 14,6 миллионов человек, причем около 70 % из них зани-
маются разработкой многопоточных приложений сейчас или планируют
начать ее в течение года [1] . По данным того же опроса, 33,4 % разработ-
чиков считают, что главной проблемой таких разработок является слож-
ность параллельного программирования, а 13,7 % – нехватка программных
средств для создания, тестирования и отладки параллельных приложений.
Следовательно, в решении задачи автоматического поиска ошибок в ис-
ходном коде непосредственно заинтересованы примерно 2 млн. програм-
мистов. При этом параллельное программирование, приход которого мно-
гие специалисты сравнивают с приходом ООП [2] , для многих из них
является новой областью.

Языки и библиотеки
Так же, как и в классическом, «последовательном» программирова-

нии, для параллельного программирования применяется множество раз-
личных языков и библиотек, существенно отличающихся по своим прин-
ципам и возможностям. График, показывающий наиболее популярные
языки параллельного программирования по данным еще одного опроса [3],
приведен на рис. 1.

На рис. 1 «Funct.» обозначает языки функционального программи-
рования, «Logical» соответствует языкам логического программирования, а
«Other» – другим языкам. Как видно наиболее популярными языками яв-
ляются C и C++, что, в принципе, ожидаемо, так как к программам именно
на этих языках применяются, как правило, требования высокой производи-
тельности. В то же время в этих языках отсутствуют встроенные средства
распараллеливания. Специальная поддержка параллельного программиро-
вания должна появиться только в языке С++0x, который, в частности, под-

Известия ТулГУ. Технические науки. 2010. Вып. 2. Ч. 2

 174

держивается компилятором Visual Studio 2010. Сегодня же для создания
параллельных программ на этих языках используются специальные биб-
лиотеки, реализующие необходимую функциональность. График, иллюст-
рирующий популярность различных библиотек (по данным упомянутого
ранее опроса [3]), представлен на рис. 2.

Рис. 1. Наиболее популярные языки параллельного программирования

Рис. 2. Наиболее популярные библиотеки

параллельного программирования

Управление, вычислительная техника и информационные технологии

 175

На рис. 2 «Par.Comp.» соответствует распараллеливающим компи-
ляторам (которые, по данным опроса, не особенно популярны). Наиболее
популярными библиотеками являются MPI, OpenMP и POSIX threads (или
Pthreads). Отметим, что в языках Fortran и Java, имеются встроенные сред-
ства распараллеливания, поэтому, несмотря на то, что упомянутые наибо-
лее популярные библиотеки в том или ином виде доступны и для этих двух
языков, в них чаще применяются встроенные средства распараллеливания.

Еще раз напомним, что все эти языки и библиотеки различаются
своими возможностями и даже самими принципами организации парал-
лельности. Однако есть между ними и кое-что общее: ошибки, которые
могут привести к неожиданному поведению параллельных программ.

Общие ошибки
Наиболее распространенные ошибки, встречающиеся в параллель-

ных программах, делятся на два вида: тупики (зависания) и состояния го-
нок. Эти ошибки могут возникнуть в программе вне зависимости от языка
или библиотеки, использующейся для реализации параллельности, по-
скольку обусловлены они самими основами параллельного программиро-
вания (которые остаются неизменными уже не первое десятилетие).

Теперь рассмотрим каждый из двух видов ошибок подробнее.
Тупики (зависания) возникают тогда, когда для продолжения рабо-

ты многопоточной программы каждому из потоков необходимо дождаться
освобождения какого-либо объекта, но этот объект не может быть освобо-
жден. Как правило это происходит в том случае, когда поток А ждет осво-
бождения одного объекта (например , семафор а) потоком Б, а по ток Б, в
свою очередь, ждет освобождения другого объекта потоком А. Зависание
также может произойти, если один из потоков заблокирует и не освободит
объект, необходимый для дальнейшей работы остальных потоков.

Состояние гонок возникает при доступе к одной и той же области
общей памяти двух или более потоков одновременно тогда, когда выпол-
нены два условия:

1) хотя бы одна из этих операций доступа является операцией записи;
2) потоки не используют механизм, явно предотвращающий одно-

временные операции доступа (например, критические секции) [4] .
В то время как последствия первой ошибки достаточно очевидны,

программа перестанет реагировать на действия пользователя, последствия
второй ошибки могут быть весьма разнообразны. Чтение или запись не-
правильного значения переменной может вызвать неожиданное поведение
тестируемой программы, которое к тому же очень трудно будет воспроиз-
вести, ведь при повторном выполнении программы та же переменная мо-
жет принять другое значение (в том числе и корректное). Такое поведение
обуславливается устройством современных многоядерных процессоров:
поскольку каждое ядро, фактически, работает в своем собственном време-
ни, которое не синхронизируется с временем других ядер, операции, вы-

Известия ТулГУ. Технические науки. 2010. Вып. 2. Ч. 2

 176

полняемые одновременно, могут совпасть, а могут и не совпасть в опреде-
ленный момент реального, физического времени. Вероятность такого сов-
падения зависит от числа ядер и количества операций, выполняемых ими
одновременно с общей областью памяти. Оба значения, естественно, уве-
личивают эту вероятность.

Например, цикл из 100000 итераций в приложении на языке C, рас-
параллеленный с помощью OpenMP на два ядра, приведет к состоянию го-
нок почти в 100 % случаев, если его тело будет содержать одну лишь про-
стейшую операцию увеличения общей переменной на единицу.
Переменная в результате будет принимать почти случайные значения в ин-
тервале примерно от 45.000 до 99.000.

Диагностика ошибок
Существует целый ряд причин, делающий отладку параллельных

программ намного сложнее, чем отладку последовательных. Рассмотрим
некоторые их них.

Эффект наблюдателя – любая попытка слежения за поведением па-
раллельной системы может изменить поведение этой системы. Типичным
примером этой проблемы является попытка обнаружить состояние гонок с
помощью выполнения кода по шагам, в этом случае проблема одновре-
менного доступа к общей памяти, скорее всего, не возникнет, так как дей-
ствия параллельных потоков будут разделены во времени.

Нестабильное воспроизведение – одна и та же программа может да-
вать различные результаты с одними и теми же данными.

Отсутствие единых, синхронизированных часов (являющееся при-
чиной двух предыдущих проблем) может затруднить анализ результатов
наблюдений.

Для отладки многопоточных приложений применяются следующие
основные методы.

Традиционная отладка (выполнение кода по шагам, использование
точек останова). Преимущество данного подхода заключается в том, что он
позволяет детально изучить состояние системы в каждый момент времени
и проконтролировать изменение этого состояния. Недостаток заключается
в том, что этот подход, как уже упоминалось ранее, подвержен воздейст-
вию эффекта наблюдателя.

Отладка на основе событий (представление выполнения программы
как параллельных цепочек событий). Такой подход позволяет получить
стабильное воспроизведение той или иной проблемы в виде записи после-
довательности приводящих к ней изменений состояний системы. Однако,
если запись информации о событиях не может производиться непрерывно,
не оказывая существенного влияния на ход выполнения программы, на ре-
зультаты может оказать влияние эффект наблюдателя.

Динамический анализ (инструментирование исполняемого кода
программы) позволяет обнаружить ошибки во время работы программы

Управление, вычислительная техника и информационные технологии

 177

(например, при выполнении ряда автоматизированных тестов). Этот под-
ход (как и два предыдущих) требует запуска тестируемой программы, по-
зволяет проанализировать поведение, зависящее от пользователя, но про-
веряет, с другой стороны, только код, выполняющийся во время теста, а
также существенно замедляет выполнение тестируемой программы из-за
необходимости сбора данных о ее состоянии (профилей). Сам процесс ана-
лиза также называется профилированием и, по сравнению с обычным вре-
менем работы программы продолжаться он может в сотни и даже тысячи
раз дольше [5] .

Статический анализ (разбор и анализ исходного кода программы).
Этот подход позволяет проанализировать исходный код программы и об-
наружить некоторые ошибки, не запуская при этом саму программу. Ста-
тический анализ не подвержен воздействию эффекта наблюдателя, но по-
зволяет проверять лишь то поведение, которое не зависит от пользователя.
Еще одним недостатком статического анализа является то, что он обнару-
живает лишь потенциально подозрительные, а не гарантированно ошибоч-
ные строки исходного кода. Это означает, что решение об исправлении ис-
ходного кода должен принимать программист, а процесс такого
тестирования является автоматизированным, но не автоматическим.

Статический анализ как средство диагностики
Как уже упоминалось выше, данный подход имеет ряд преиму-

ществ и недостатков, которые, впрочем, можно компенсировать парал-
лельным применением динамического анализатора или какого-либо иного
отладчика. Совместное применение отладчиков, использующих различные
методы, вообще позволяет добиться наибольшей эффективности при поис-
ке ошибок.

Статический анализ интересен своей универсальностью – он позво-
ляет рассматривать тестируемую программу как некую абстракцию, не
связанную с конкретным языком программирования и/или библиотекой.
Процесс статического анализа фактически состоит из двух этапов: по-
строения модели исследуемой программы и анализа этой модели. Таким
обр азо м, один и тот же анализ мо жно провести для моделей р азличных
программ, более того, подаваемая на вход модель не обязательно должна
быть моделью программы, она может представлять любую систему, лишь
бы допустимые вид и язык, использующиеся для описания это й модели,
были понятны лексическому и синтаксическому анализаторам (то есть мо-
дулям, отвечающим за построение модели из поданных на вход данных).

Инструменты, используемые для анализа параллельных программ,
можно условно разделить на три вида по их функциональности:

1) средства создания моделей, например, C2Petri [6] или Evinrude
[7] , создающие сети Петри из исходного кода на языке С, использующего
библиотеку POSIX threads;

Известия ТулГУ. Технические науки. 2010. Вып. 2. Ч. 2

 178

2) средства анализа моделей (в англоязычных источниках называе-
мые model checkers);

3) статические анализаторы, функциональность которых включает в
себя и создание моделей (как правило, деревьев кода), и их анализ. Напри-
мер, PVS-Studio – анализатор, помимо прочего, обнаруживающий ошибки
в параллельных программах на С/С++, использующих технологию
OpenMP.

Наиболее распространенным средством моделирования параллель-
ных программ являются сети Петри, представляющие процесс работы па-
раллельной программы в виде графа. Реже применяются UML и специаль-
ный метаязык PROMELA (например, в анализаторе Spin). Преимущество
сетей Петри заключается в наличии развитого математического аппарата
[8], позволяющего производить анализ, руководствуясь математически до-
казанными теоремами, а не только эвристическими правилами, специфич-
ными для каждого конкретного языка. Анализ с использованием сетей
Петри может проводиться на различных этапах разработки программы. В
частности, она может быть изначально разработана и отлажена в виде сети
Петри, которая затем автоматически преобразуется в исходный код на
Java, C/C++ или каких-либо еще языках высокого уровня (например, с по-
мощью AC/DC (Automatic Code Generation from Design/CPN), LOOPN++
или других инструментов, общее количество которых превышало 50 уже к
2000 году) [9] . Однако далеко не каждый программист строит модели пла-
нируемой программы, прежде чем начинать ее писать, поэтому куда более
распространенной задачей является анализ уже имеющегося кода. Такая
задача может быть выполнена статическим анализатором, сочетающим в
себе функциональность построения модели и ее анализа.

Отметим, что общие шаги в процессе работы такого инструмента
могут различаться в зависимости от конкретной реализации. Возможные
варианты таких шагов представлены на рис. 3 (здесь под моделью понима-
ется сеть Петри).

Рис. 3. Различные варианты анализа параллельной программы

Управление, вычислительная техника и информационные технологии

 179

Вариант, показанный слева на рис. 3, является наиболее распростра-
ненным среди статических анализаторов, в частности, его использует упо-
мянутый ранее анализатор PVS-Studio, вариант справа используется, в ча-
стности, инструментами, описанными в [7, 10]. Он может также
достигаться путем комбинированного использования нескольких инстру-
ментов: генератора сети Петри из исходного кода и анализатора, прове-
ряющего построенную сеть на предмет состояний гонок и тупиков.

Заключение
Параллельное программирование для персональных компьютеров с

каждым днем становится все более и более популярным. В течение этого
года с ним так или иначе придется столкнуться около 70 % программи-
стам. При этом сложность параллельного программирования и нехватку
средств для создания и отладки параллельных программ чаще всего назы-
вают причинами, мешающими развитию параллельного программирова-
ния.

Наиболее распространенными проблемами, встречающимися в па-
раллельных программах, являются тупики (зависания) и состояния гонок
(одновременная запись данных в общую область памяти несколькими по-
токами и (опционально) чтение из этой же области). Автоматическое или
даже автоматизированное нахождение таких ошибок связано с немалыми
трудностями в связи с тем, что они могут не воспроизводиться стабильно,
а любая попытка наблюдения за системой может привести к изменению ее
поведения. Для обнаружения таких ошибок разработан ряд методов, одним
из которых является статический анализ. Данный метод интересен тем, что
позволяет в автоматизированном режиме за разумное время получить ин-
формацию о корректности тестируемой программы, не запуская эту про-
грамму. При этом параллельные программы можно моделировать с помо-
щью сетей Петри, для которых разработан универсальный, не зависящий
от типа моделируемой системы, математический аппарат, позволяющий
анализировать корректность данной системы.

В связи с этим перспективными представляются создание инстру-
мента, реализующего соответствующие правила на практике и работающе-
го с несколькими (наиболее популярными) языками программирования, а
также разработка некоторого универсального алгоритма, позволяющего
легко расширять множество поддерживаемых языков, описывая соответст-
вия между конкретными синтаксическими конструкциями и соответст-
вующими сетями Петри.

Список литературы

1. Evans Data Market Alert: Intel’s Parallel Studio Brings Parallel Pro-
gramming into the Mainstream, Issue 1, June 2009. URL:
http://www.evansdata.com/research/market_alerts/EDC_Market_Alert_2009_Ju
ne_Issue.pdf (дата обращения: 13.06.2009).

Известия ТулГУ. Технические науки. 2010. Вып. 2. Ч. 2

 180

2. Sutter H. A Free Lunch Is Over. URL: http://www.gotw.ca/publications
/concurrency-ddj.htm (дата обращения: 30.03.2008).

3. Suess M, Leopold C. Observations on the Publicity and Usage of Paral-
lel Programming Systems and Languages: A Survey Approach. URL:
http://kobra.bibliothek.uni-kassel.de/bitstream/urn:nbn:de:hebis:34-
2007050818071/6/survey.pdf (дата обращения: 08.05.2007).

4. A Dynamic Data Race Detector for Multithreaded Programs / S. Savage
[et al.]. ACM Transactions on Computer Systems. 1997. Vol. 15. № 4/
P. 391-411.

5. Intel Thread Checker in Cimatron ltd. URL:

sshopin@mail.ru (Россия, Тула, ТулГУ)

СИСТЕМА УПРАВЛЕНИЯ АСИНХРОННЫМ ПРИВОДОМ
НА ПРОЦЕССОРЕ BLACKFIN

Описаны структура и состав блоков системы управления асинхронным приво-
дом, позволяющей исследовать сложные нелинейные законы управления и наблюдения,
требующие большого объема вычислений.

Ключевые слова: асинхронный привод, система управления, микропроцессор.

http://software.intel.com/
en-us/articles/intel-thread-checker-in-cimatron/ (дата обращения: 14.10.2009).

6. Kavi M., Moshtahi A. Modeling Multithreaded Applications Using Pe-
tri Nets. International Journal of Parallel Programming, Vol. 30, № 5. P. 353-371.

7. Voron J., Kordon F. Evinrude: A Tool To Automatically Transform
Program’s Sources into Petri Nets // Petri Nets Newsletter. Vol. 75.

8. Котов В.Е. Сети Петри. М.: Наука, 1984. 159 с.
9. Mortensen K. Automatic Code Generation from Coloured Petri Nets for

an Access Control System. URL: www.daimi.au.dk/CPnets/ workshop99/
papers/Mortensen.pdf (дата обращения: 11.01.2010).

10. Haziza F. Model Checking Race-Freeness. URL: http:// por-
tal.acm.org/ft_gateway.cfm?id=1556454&type=pdf (дата обращения:
15.11.2009).

A. Kolosov
Concurrent applications debugging techniques
Parallel programming development and debugging problems are discussed. Four de-

bug techniques are described: traditional debug, event-driven debug, static analysis and dy-
namic analysis.

Keywords: parallel programming, debug, static analysis, Petri nets.

Получено 07.04.10

УДК 621.3.07,681.58
С.А. Шопин, асп., (4872)-40-27-25, 953-423-83-72,

В настоящее время для реализации систем векторного управления
асинхронным приводом существует большое количество стандартных реше-

