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рутонаклонный конвейер с при-
жимной лентой обладает значи-

тельной унификацией со стандартным 
ленточным конвейером, но существенно 
различаются подходы к расчету конст-
руктивных параметров. Значительную 
роль в процессе транспортирования иг-
рает напряженно-деформированное со-
стояние конвейерных лент, так для 
обеспечения минимальных радиусов пе-
реходных кривых отказываются от ис-
пользования резинотросовых лент и ис-
пользуют синтетические тканевые кон-
вейерные ленты.  

При установившемся режиме работы 
ленты принято рассчитывать как обо-
лочку с ортотропным свойством мате-
риала. Такая модель ленты дает доста-
точно точные результаты при расчете 
установившегося режима работы кон-
вейера. Однако синтетические конвей-
ерные ленты обладают ярко выражен-
ными динамическими свойствами. Пе-
реходной режим работы может влиять 
на напряженно-деформированное со-
стояние конвейерной ленты в устано-
вившемся режиме, когда в ленте проис-
ходит накопление деформаций – этап 
вытяжки конвейерной ленты [1]. 

Временную связь между напряже-
ниями и деформациями, устанавливают 
экспериментальным путем, затем опи-
сывают ее аналитическими зависимо-
стями, которым соответствуют реологи-
ческие модели, отражающие основную 

сущность работы ленты при динамиче-
ских нагрузках.  

Рассмотрим некоторые реологиче-
ские модели лент, которые описывают 
поведение конвейерных лент при растя-
жении.  

Простейшими реологическими моде-
лями вязко-упругих материалов являют-
ся тела Фохта (Кельвина) и Максвелла.  

Модель Фохта состоит из параллель-
но соединенных вязкого и упругого 
элементов. Напряжения в случае про-
стого растяжения записываются в виде: 

( ) dt E
dt
εσ ε η= ⋅ +         (1) 

где Е – модуль упругости, Н/мм2; ε  - 
относительная деформация образца, мм; 
η  - вязкость, 2/H c мм⋅ . 

Эффекты запаздывания при нагрузке 
и разгрузке вызываются упругим после-
действием (рис. 1). При нагрузке этот 
эффект называется ползучестью, при 
разгрузке упругим последействием. τ – 
время запаздывания. Т – время действия 
нагрузки. Считается, что весь процесс 
запаздывания заканчивается за время 
3τ . При приложении мгновенной нагруз-
ки первоначальная деформация равна ну-
лю [2].  

Реальные конвейерные ленты не об-
ладают свойствами «чистых» моделей 
Фохта или Максвелла, поэтому в эти 
модели вводят дополнительные элемен-
ты.  
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Наиболее часто модель ленты пред-
ставляется, как последовательно соеди-
ненные элементы Фохта с различными 
характеристиками. Эта модель позволя-
ют получить некоторую конечную де-
формацию при мгновенном и бесконеч-
но длительном приложении нагрузки, 
что частично соответствует реальным 
деформациям при работе ленты [1]. 

Для достижения необходимой точно-
сти модель ленты часто представляют 3-
мя последовательно соединенными эле-
ментами Фохта, первый элемент в кото-
рой обладает нулевой вязкостью. Кон-
станты для низкочастотного элемента 
полученные в работах И.В. Запенина и 
С.Д. Мягкова лежат в одном пределе для 
времени запаздывания 200–300 сек. 

Рассмотренные выше эксперимен-
тальные зависимости в описании ди-
намических свойств ленты могут 
иметь и более сложное толкование. 
Возможно использование интеграль-
ных зависимостей. В настоящее время 
известно большое количество ядер. 
Часто при описании динамических 
свойств ленты использовалось ядро 
Абеля. Недостатком которого являет-
ся существенная зависимость потерь 
энергии от частоты колебаний при 
любых константах входящих в эти яд-
ра, что не соответствует свойствам 
реальных лент. 

 
 

Рассчитать деформации, 
используя эксперименталь-
ные временные зависимости, 
затруднительно, поэтому 
возможен переход к частно-
му описанию как свойств 
конвейерной ленты, так и 
возмущающих нагрузок. В 

общем случае на ленту действует пе-
риодическая продольная нагрузка, кото-
рую можно представить как сумму сину-
соид, разложив ее в ряд Фурье. Известно, 
что если на элемент Фохта действует си-
нусоидально меняющаяся нагрузка, то [3]: 
σ0 ε0 E⋅ i ω⋅ η⋅ ε0⋅+:=

      (2) 
где i - мнимая единица, σ0  и ε0 ампли-
тудные значения напряжения и дефор-
мации меняющиеся с частотой ω. 

Выражение (1) можно записать в ви-
де: 

σ0 ε0 Eabc⋅ ei φ⋅⋅:=
      (3) 

где φ - угол сдвига между напряжением 
и деформацией; abcE  – абсолютный 
модуль упругости. 

Абсолютный модуль упругости мож-
но представить как сумму статического 
и динамического модуля упругости.  

Eabc ω( ) Ect
2

η
2

ω
2

⋅+:=
      (4) 

Из выражения (4) следует, что вектор 
деформации отстает от вектора напря-
жения на угол φ.  

Рассмотрим динамические свойства 
модели, состоящей из 3-х элементов Фох-
та. Деформация модели равняется вектор-
ной сумме деформаций каждого элемента 
Фохта.  

 
 

Рис. 1. Упругое последействие 
после нагрузки и разгрузки 
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   (5) 
Вводя понятие податливости 
1=I E , из выражения (5) имеем сле-

дующее выражение для абсолютной по-
датливости: 
IΕ n( )

1

Ea1 n( ) e
i φ1 n( )⋅

⋅

1

Ea2 n( ) e
i φ2 n( )⋅⋅

⋅

+
1

Ea3 n( ) e
i φ3 n( )⋅⋅

⋅

+:=

               (6) 
Приведенный для обобщенной моде-

ли модуль упругости, зависящий от час-
тоты, равен: 

Eω n( )
1

IΕ n( )
:=

       (7) 
Приведенная вязкость обобщенной 

модели и обобщенный сдвиг фаз: 

φω n( )
1

tan
ηω n( ) ω n( )⋅

Ect

⎛
⎜
⎝

⎞
⎟
⎠

:=

      (8) 
В работе будем использовать модель 

состоящую из 3-х элементов Фохта. Ха-
рактеристики элементов возьмем из ра-
боты С.Д.Мягкова, в которой исследо-
вались различные синтетические кон-
вейерные ленты. В этой работе вязкость 
первого элемента равняется нулю, а для 
остальных элементов из экспериментов 
замерялось время запаздывания. 

 

Найдя абсолютный модуль упруго-
сти для каждого элемента, находим аб-
солютную податливость модели, абсо-
лютный модуль упругости. 

Располагая частными характеристи-
ками лент, нетрудно решать практиче-
ские задачи в случаях, когда приклады-
ваемые нагрузки отличны от синусои-
дальных. Натяжения в лентах меняются 
по периодическому закону, с периодом 
функции равному времени обхода всего 
контура конвейера. Использую расчет-
ные данные, получаем зависимость из-
менения натяжения в ленте от времени 
ее прохождения по контору конвейера. 
При прохождении порожней ветви на-
тяжение в ленте падает. Из-за наличия 
участка с уменьшающимся натяжением 
ленты, нельзя аппроксимировать данные 
экспоненциальной зависимостью. Ап-
проксимируем полученные данные поли-
номами различной степени (рис. 2). 

Наиболее точно описывает измене-
ние натяжений от времени в грузонесу-
щей ленте полином 3ей степени. Этот 
полином, для рассчитываемого конвейе-
ра, имеет следующий вид: 
f t( ) 3.905 104⋅ 425.518t⋅− 9.924 t2⋅− 0.185 t3⋅+:=
               (9) 

Следующим шагом наших расчетов 
является разложение в ряд Фурье данно-
го полинома на отрезке от 0 до T. Где Т 
– период прохождения ленты по конто-
ру. Поскольку обобщенные модуль уп-
ругости, вязкость и сдвиг фаз являются 
комплексными числами, то для описа-
ния деформаций модели воспользуемся 
коэффициентами рядя Фурье в ком-
плексном виде. 

Разложение функции и расчеты ко-
эффициентов проводились на ПЭВМ в 
прикладном математическом пакете 
Mathcad 11. Коэффициенты ряда Фурье 
для функции с периодом Т в комплекс-
ной форме определяются как: 

ηω n( )
Eω n( )2 Ect−

ω n( )
2

:=  
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Cn
1
T 0

T

tf t( ) e i− ω n( )⋅ n⋅ t⋅
⋅

⌠
⎮
⌡

d⋅:=

, 
ω0

2 π⋅

T
:=

 
   (10) 

Далее вычислим частичные функции 
и постоим их графики: р

S t k,( ) C0
1

k

n

2 Cn⋅ cos ω n( ) t⋅ arg Cn( )+( )⋅∑
=

+:=

(11) 

где | |nC - амплитуда гармоники, 

arg( )nC - относительный фазовый 

сдвиг, 0( )n nω ω= ⋅  - частота гармо-
ники Сn . 

Графическое представление ряда 
Фурье состоящего из шести элементар-
ных функций представлено на рис. 3.  

 

 
 
Рис. 2. Аппроксимирующие полиномы 3, 4 и 5-й степени 
 

 
 
Рис. 3. Ряд Фурье состоящий из 6 функций 
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Деформацию модели запишем как 
сумму реакций системы на возмущения 
C1, C2…C5 с частотами ω0 , 2ω0…5ω0 
(ввиду линейности системы и возмож-
ности принципа суперпозиции): 

 

 
По полученной зависимости можно 

определить деформации модели конвей-
ерной ленты в любой момент времени.  

Для избежания просыпания груза 
увеличивают прижимное давление, так 
же оставляют значительные свободные 
края лент. В настоящий момент величи-
на свободных краев при-нимается при-
мерно равной 30 % от ширины ленты. 
Наибольшее суммарное давление от ве-
са груза, боковых давлений и прижим-
ных усилий приходится на средний ро-

лик. При прохождении каждой роли-
опоры появляется силы сопротивления 
движению ленты, зависящие от величи-
ны давлений на роликоопору, Неравно-
мерные давления приводят к неравно-
мерному сопротивлению движению на 
роли-коопоре. 

При прохождении ленты по контуру 
эти сопротивления суммируются и ком-
пенсируются приводом конвейера. Мо-
делирование напряженно-
деформированного состояние ленты 
грузонесущего контура проводилось в 
программном пакете ANSYS, на рис. 4 
представлены полученные деформации 
(м) и напряжения (Па) в конвейерной 
ленте, вид сверху.  

На приводном барабане возникаю 
три различные зоны давления ленты на 
барабан. Давления в этих зонах разли-
чаются на порядок, из-за этого получа-
ется различный на этих участках тяго-
вый фактор. Что необходимо учитывать 
при выборе мощности привода. 

Из-за неравномерности натяжения по 
поперечному сечению ленты вытяжка 
ленты оказывается неравномерной. При 

прохождении порожней час-
ти грузонесущего конвейера 
напряжения в ленте не успе-
вает полностью релаксиро-
вать, и на грузовую часть 
лента приходит с вытянутой 
серединой.  

На грузонесущую ленту 
на линейной части крутона-
клонного конвейера с при-
жимной лентой действуют 
давления: от веса груза, от 

 

 
Рис. 4. Деформации(а) и напря-
жения(б) в грузонесущей ленте 
на приводном барабане  

Рис. 5. Деформации конвейерной 
ленты между роликоопорами 
 



 265 

погонных прижимных усилий, от рас-
порных боковых давлений. Нагрузки 
прикладывались в виде сосредото-
ных сил к узлам элементов. При расчете 
сложного напряженного состояния в ли-

нейной теории сопромата 
действует принцип 
зиции, раскладывающий 
сложное состояние на сумму 
действия простых. В нашем 
случае нас интересовала 
вместная работа сил 
ния и нормальных сил, для 
этого необходимо проводить 
нелинейный расчет. На рис. 
5 приведены полученные ре-
зультаты вертикальных пе-
ремещений (в метрах). При 
натяжении конвейерной лен-
ты в 50 кН, что соответству-
ет натяжениям в середине 
линейной части, и давлениях 
действующих на нее, при 
данной величине свободных 

краев ленты равной 30 % ширины, вели-
чина прогиба составила 2 см. Варьируя 
натяжением и величиной загрузки, мож-
но обосновать необходимую величину 
свободных краев конвейерной ленты.
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